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“Any suciently advanced technology is indistinguishable from magic.”
— Arthur C. Clarke, Proles of the Future





Abstract

Interactive design of freeform architectural surface panelizations is at the core of this
PhD thesis. We provide the computational framework for dealing with two impor-
tant types of paneling elements. Specically, we focus on certain types of developable
surfaces and cold bent glass panels, all relevant to contemporary freeform architec-
ture.

To this end, we initially present a novel method for increasing the developability
of a B-spline surface. We use the property that the Gauss image of a developable sur-
face is 1-dimensional and can be locally well approximated by circles. This is cast into
an algorithm for thinning the Gauss image by increasing the planarity of the Gauss
images of appropriate neighborhoods. A variation of the main method allows us
to tackle the problem of paneling a freeform architectural surface with developable
panels, in particular enforcing rotational cylindrical, rotational conical and planar
panels, which are the main preferred types of developable panels in architecture due
to the reduced cost of manufacturing. We are interested in near developability, rather
than exact developability, so the optimization approach is sucient. The motivation
behind this is the fact that most materials allow for a little bit of stretching and there-
fore developability needs not be satised to a high degree.

One such material is glass which is the main focus of the second panelization
problem of this thesis. Toughened glass can withstand higher stresses, and there-
fore allows initially planar glass panels to be elastically bent and xed at ambient
temperatures to a curved frame. This process is called cold bending and it produces
panels that can exhibit double curvature, providing a cost- and energy-ecient al-
ternative of higher optical quality than traditional hot bent glass panels. However,
it is very challenging to navigate the design space of cold bent glass panels due to
the fragility of the material, which impedes the form-nding for practically feasible
and aesthetically pleasing cold bent glass façades. We present an interactive, data-
driven approach for designing cold bent glass façades that can be seamlessly inte-
grated into a typical architectural design pipeline. Our method allows non-expert
users to interactively edit a parametric surface while providing real-time feedback
on the deformed shape and maximum stress of cold bent glass panels. Designs are
automatically rened to minimize several fairness criteria while maximal stresses
are kept within glass limits. We achieve interactive frame rates by using a dieren-
tiable mixture density network trained from more than a million simulations. Given
a curved boundary, our regression model is capable of handling multistable cong-
urations and accurately predicting the equilibrium shape of the panel and its corre-
sponding maximal stress. We show predictions are highly accurate and validate our
results with a physical realization of a cold bent glass surface. For both applications
explored in this work, a plethora of results and examples are provided.
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Introduction 1

The recent advances in computational design tools, manufacturing techniques, and
structural materials have provided architects and designers the freedom to challenge
the boundaries of contemporary architecture and achieve truly ambitious and beau-
tiful designs. Freeform architecture in particular is one example of such design phi-
losophy in which the architectural space is enclosed by a collection of freeform sur-
faces, usually called façades (see Figure 1.1). Many interesting challenges arise when
attempting to realize such a freeform design, and these constitute the main focus of
a relatively recent research area called Architectural Geometry.

In particular, the realization of such freeform designs usually involves the cov-
ering of the design surface by smaller simpler elements called panels. This process
is called panelization and a lot of problems revolve around it. These include but are
not limited to the choice of combinatorics of the panelization, the choice of panel
geometry, i.e. shape, scale, curvature etc., and adhering to a number of constraints,
such as those imposed by the chosen material, and the project budget.

The designer’s toolset nowadays is of course mostly digital and the majority of

Figure 1.1: The GuggenheimMuseumBilbao (Bilbao, Spain) is a famous example of freeform architecture,
designed by Frank Gehry, a signicant representative of this architectural movement.
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1 Introduction

the design workow is done on computer-aided design (CAD) software. While tra-
ditional digital tools allow for modeling ambitious forms, these might not be neces-
sarily realizable due to a number of constraints. These constraints can derive from
aesthetic ambition, structural requirements, material limitations, and economic re-
strictions. It is clear that the incorporation of these requirements to available design
tools is of great practical importance.

Two developments that emerged from this need are constraint-based surface mod-
eling which embeds the design constraints, usually geometric in nature, into the
modeling stage, and fabrication-aware design which involves design tools that gen-
erate buildable structures of a certain type. A special case of the latter is material-
aware design which allows for modeling geometry that is manufacturable by a spe-
cic material, such as glass. In this research work, we are interested in both types of
geometry modeling tools.

1.1 Motivation

The main motivation of this thesis is the facilitation of the design creative process
via the improvement of the modeling tools at the designer’s disposal. To this end,
we provide a computational framework for two important instances of panelization
problems, namely realizing a freeform design with (i) developable surfaces and (ii)
cold bent glass panels. We present in this section the importance of these contribu-
tions.

A developable surface is a surface that can be attened onto a plane without
distortion. Panels of this type are popular in freeform architecture since they can
be achieved from initially planar elements only by bending, making them a cost-
eective choice. The bending process varies depending on thematerial choice, which
includes metal, wood, and glass.

Furthermore, glass processing methods have allowed glass to be used as more
than a decorative or functional material. In particular, the introduction of a thin
layer of residual compression to the glass panel surface during manufacturing leads
to the production of toughened glass. This type of glass can withstand larger amounts
of stress, allowing larger amounts of deformation than traditional glass, supporting

Figure 1.2: The façades of the Eiel tower pavilions (Paris, France) are an example of a freeform surface
being approximated by simpler elements. Specically, cylindrical hot bent glass panels were used in this
case to cover a non-developable surface. Photo by Evolute GmbH.
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1.2 Contributions

Figure 1.3: Proof-of-concept prototype of a cold bent glass panelization consisting of 3×3 panels at model
scale.

its usage as a structural element. The additional deformation freedom also allows
for an initially at glass panel to be elastically bent, while staying within the ma-
terial safety limits, to a desired curved shape. This process is called cold bending;
in contrast to hot bending which involves the glass panel to be heated to transition
temperature before molding it into the desired shape. The at glass panel is bent to
a pre-manufactured frame, usually with the help of clamps or presses, before being
xed into place with the use of mechanical xings or structural adhesives. Interest-
ingly, cold bent glass panels are not limited to single-curved (developable) surfaces,
but also allow for double-curved shapes.

Freeform architecture has recently witnessed the increased use of this type of
cold bent glass paneling elements (see Figure 1.3). They present several advantages
making them an appealing alternative to the hot bending process and justifying their
usage in freeform panelization. First of all, cold bent glass is much more cost- and
energy-ecient to produce. The initial glass panel is always at which removes the
need to pre-bend it using furnaces and special molds that provide shape to the panel.
Secondly, the use of molds during the hot bending process introduces minor visual
artifacts to the surface, meaning that the alternative cold bent glass panels result to
superior visual quality. Moreover, the cold bending process can be optionally carried
out in situ allowing for the panels to be more easily transported in their at state.

1.2 Contributions

Motivated by the arguments presented above, this thesis provides the following core
contributions:

◦ We present a novel optimization method for increasing the developability of
an arbitrary surface. It is based on local approximations of the surface by de-
velopable surfaces with planar and thus circular Gauss images.

◦ We employ the above methodology to the problem of paneling a freeform sur-
face with (rotational) cylindrical, (rotational) conical and planar panels, which
are the main preferred types of developable panels in architecture due to the
reduced cost of manufacturing.

3



1 Introduction

◦ We provide a computational framework for interactively designing a paneliza-
tion of a freeform surface with cold bent glass panels. The interactive design
tool employs a data-driven model, which was trained on a large number of
costly simulations, that suciently predicts the shape and the maximal stress
of a cold bent glass panel conguration.

1.3 Publications

The contributions of this thesis have been presented in the following publications:

◦ Optimizing B-spline surfaces for developability and paneling architec-

tural freeform surfaces.

Konstantinos Gavriil, Alexander Schiftner, and Helmut Pottmann.
Computer-Aided Design, 111, 29-43, 2019.

◦ Computational Design of Cold Bent Glass Façades.

Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Hen-
derson, Florian Rist, Helmut Pottmann, and Bernd Bickel.
ACM Trans. Graph., 39(6), 208:1-208:16, 2020. Proc. SIGGRAPH Asia 2020.

While the extent of the research work conducted during this PhD is not limited to
the above published material, we refer to only that relevant to this body of work. The
above publications constitute the majority of the PhD research work and represent
the main consistent research framework. The abstracts of the excluded publications
are provided in Appendix B.

1.4 Overview and organization

In Chapter 2, we present a novel method for increasing the developability of B-
spline surfaces, and employ it to the problem of paneling a freeform architectural
surface with special types of developable panels that are of interest in architecture.
We base the method on the fact that developable surfaces possess 1−dimensional
Gauss images and can be locally approximated by surfaces with planar Gauss im-
age. We present the necessary background as well as elaborate on the theory that
justies this approach in Section 2.2 before formulating the problem as an optimiza-
tion problem in Section 2.3. The paneling problem is presented in Section 2.4 as
an adapted optimization problem that employs the previous methodology. Special
types of developables such as (rotational) cylindrical, (rotational) conical and planar
panels are naturally handled by the method. Section 2.5 presents several results and
experiments of this approach, as well as a short discussion on the advantages and
disadvantages of the method.

In Chapter 3, we present the complete computational framework for designing
panelizations with cold bent glass panels. The method is multidisciplinary, borrow-
ing concepts and methods from material simulation, geometry optimization, ma-
chine learning, and interactive design. We present a brief overview of the distinct
parts of the method in Section 3.1.3 before describing each part in detail. A descrip-
tion of the mechanical model used for the glass panel simulations is presented in
Section 3.3. We present an appropriate geometry representation that is sucient for
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1.4 Overview and organization

our needs in Section 3.2. In Section 3.4 we demonstrate the construction of the data-
driven model that is at the core of the method. Multiple simulations were performed
for randomized (within reasonable bounds) curved glass panel frames. A database
was populated with the resulting shapes and maximal stress values for each simula-
tion, which was later used to train a machine learning model. Specically, we trained
a mixture density network (MDN), capable of capturing the multimodality present in
the dataset. In Section 3.5 we describe how we incorporated the MDN to an interac-
tive design tool. Several applications and results, as well as validation experiments,
are presented in Section 3.6.

Previous work for each of the problems is presented at the beginning of each
respective chapter. Finally, Chapter 4 concludes this work and provides an outlook
to future work.
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Increasing Developability 2

2.1 Introduction

Developable surfaces can be locally mapped to a planar domain without distortion.
Since they can be constructed from an initial planar state without stretching or tear-
ing, only by bending, they represent the shapes obtainable with thin materials like
sheet metal or paper which do not stretch. These surfaces are of great interest to
many applications. Areas like architecture, manufacturing and design take advan-
tage of the cost-reduced manufacturing process that developables have.

Developable surfaces have been well studied in classical dierential geometry.
Developable, twice dierentiable surfaces are single curved, meaning one of the prin-
cipal curvatures is zero. Thus, the Gauss curvature vanishes at every point. They are
composed of special ruled surfaces with a constant tangent plane at all points of a
ruling. As the surface normal vectors along a ruling agree, the Gauss image of a
developable surface is 1-dimensional, i.e. a curve.

We base the main method of the chapter on this property of the Gauss image.
However, our focus is not on exact developability, but rather on nearly developable
surfaces which we characterize by nearly curve-like Gauss images. The motivation
for our research is the fact that most materials allow for a little bit of stretching
and therefore developability needs not be satised to a high degree in a variety of
applications. In particular, we are interested in applications in architecture where
various kinds of tolerances can be exploited to reduce the production cost of freeform
skins. Our work ts into a larger research program on novel digital tools which
consider key aspects of function and fabrication, includingmaterial behavior, already
in the early design and digital modeling phase.

2.1.1 Related work

There is a vast amount of literature on developable surfaces, on their theory, their
computational design using various types of representations and on their appearance
in numerous applications. We limit this discussion to three main areas which are
most closely related to our work: (i) developable Bezier and B-spline surfaces, (ii)
discrete representations and nearly developable surfaces and (iii) their importance
in paneling architectural surfaces.

7



2 Increasing Developability

Developable Bézier and B-spline surfaces. Lang and Röschel [1992] expressed
developability of rational, in particular polynomial Bézier surfaces in a system of cu-
bic equations. In general, this system cannot be solved in a simple way, but in various
special cases, explicit solutions have been derived [Aumann, 1991, 2003; Chu&Chen,
2004; Chu & Séquin, 2002]. One can avoid these nonlinear constraints by using the
projectively dual representation, where a developable is represented as the envelope
of its tangent planes. For details, we refer to [Pottmann & Wallner, 2001, Section
6.2], but note that the dual representation is not suciently intuitive to be suitable
for interactive design. Moreover, it is dicult to control singularities. A combina-
tion of the primal and the dual representation has been successfully employed for
interactive design of developable NURBS surfaces by Tang et al. [2016].

Discrete representations andnearly developable surfaces. There are numerous
papers which model developable surfaces with triangle meshes; we just refer to a few
of them [Frey, 2004; Mitani & Suzuki, 2004; Rose et al., 2007; C. Wang & Tang, 2004].
Jung et al. [2015] improve on Decaudin et al. [2006] method that locally approximates
neighborhoods around each mesh triangle with a cone. Liu, Pottmann, Wallner, et
al. [2006] treat developable surfaces as a limit case of meshes from planar quads.
Solomon et al. [2012] use a mesh approach to exibly model the shapes achievable
by bending and folding a given planar domain without stretching or tearing. An
elegant discrete model of developable surfaces is provided by special quad meshes
which discretize orthogonal nets of geodesics [Rabinovich et al., 2018a, 2018b].

Nearly developable surfaces appear in connection with specic applications, e.g.
modeling ship hulls [Pérez & Suárez, 2007] and clothing [M. Chen & Tang, 2010] or
segmentingmeshes in geometry processing [Julius et al., 2005; Yamauchi et al., 2005].
Narain et al. [2013] go beyond developability and present a technique for simulating
plastic deformation in sheets of thin materials, such as crumpled paper, dentedmetal,
and wrinkled cloth. Closely related to our work is a paper by C. C. L. Wang et al.
[2004] on increasing developability of a trimmed NURBS surface, but our approach
and applications dier signicantly.

Another very recent work with a strong connection to our research is the devel-
opable surface ow by Stein et al. [2018]. This ow is a gradient ow on the energy∫
𝑀
𝜅21 𝑑𝐴, 𝜅1 being the smallest principal curvature. It constructs piecewise devel-

opable rather than globally developable surfaces as minimizers. The discrete model
is based on triangulations whose vertex stars dominantly lie in pairs of planes. One
could say that the surface is locally approximated by a pair of planes, their intersec-
tion representing the ruling direction. In a similar spirit, our local approximations are
of higher order, as discussed below. Note that Stein et al. [2018] generate piecewise
developable surfaces, where the arising pattern of developable patches is a result of
the geometric ow and depends on the initial triangulation. We can increase devel-
opability of a single smooth surface without the introduction of tangent discontinu-
ities. We can also allow for piecewise developable surfaces through an appropriate
selection of knots and their multiplicities in the underlying B-spline surface, but our
arrangements of developable patches are more restricted (and at the same time more
controlled) than the ones by Stein et al. [2018].

Paneling architectural surfaces. Architectural surfaces need to be decomposed
into panels, which is a key process and largely responsible for a cost eective solu-
tion. For an overview of the problems in this eld we refer to [Pottmann et al., 2015].

8



2.1 Introduction

In particular, we point to the paneling solution of Eigensatz et al. [2010]. It exploits
various tolerances at seams and a cost model for the production of panels of dif-
ferent geometric types to suggest solutions within an optimization framework. The
user provides the design surface and a suggested network of panel boundary curves,
while the algorithm slightly adapts the design surface and network and optimally lls
it with panels (patches). Our work can be considered as an extension in the sense
that the panel boundaries are also subject to optimization with the overall goal of
increasing developability of the individual panels. For developable and nearly devel-
opable surfaces in architecture, we further point to [Pottmann et al., 2008; Schiftner
et al., 2013; Schneider & Mehrtens, 2013; Shelden, 2002].

2.1.2 Contributions

The main contributions covered in this chapter are as follows:

◦ We present a novel optimization method for increasing the developability of
an arbitrary surface. It is based on local approximations of the surface by de-
velopable surfaces with planar and thus circular Gauss images. While we could
also use other representations within our framework, we prefer B-splines in
order to have simple access to smoothness of patches. Moreover, we natu-
rally obtain a patchwork of regular quad combinatorics, which is a preferred
arrangement in many architectural projects.

◦ We provide a justication of our approach in two ways: We discuss local ap-
proximations of developable surfaces, especially with those being character-
ized by a planar Gauss image. Moreover, we study the implications of a nearly
curve-like Gauss image on the underlying surface, thus supporting our claim
of achieving near developability through Gauss image thinning.

◦ We introduce a variation of the main method presented to tackle the problem
of paneling a freeform surface with (rotational) cylindrical, (rotational) conical
and planar panels, which are the main preferred types of developable panels
in architecture due to the reduced cost of manufacturing.

◦ We provide results that illustrate the power of the proposed approach and out-
line potential directions for future research.

2.1.3 Overview

This chapter is organized as follows. In Section 2.2, we outline some important fun-
damentals for our work and, in section 2.3 present the main optimization algorithm
step by step. Section 2.4 focuses on a variation of the main optimization algorithm
which is designed for paneling a freeform surface with panels that are special cases
of developable surfaces. We present the dierences with the main algorithm and in-
troduce any necessary new tools. In Section 2.5, we provide results on various data
sets, including ones from real architectural projects. Moreover, we discuss advan-
tages and shortcomings of our approach and outline future work.

9



2 Increasing Developability

2.2 Fundamentals

2.2.1 Local approximations of developable surfaces

We are interested in smooth or piecewise smooth developable surfaces 𝑆 . They are
composed of𝐶2 surface patches which fall into one of the following four categories:
planes, general cylinders, general cones and tangent surfaces of space curves. Their
Gauss images 𝐶 , i.e. sets of unit normals viewed as points on the unit sphere 𝑆2, are
composed of curves. The junction points of 𝐶 where more than two curve segments
meet, correspond to planar patches on 𝑆 . In the following, we discuss only the three
non-trivial basic types: These are ruled surfaces with a constant tangent plane along
each ruling. In other words, they are envelopes of a one-parameter family of planes.

We are interested in second order local approximations of these basic types. The
following result is well-known (see, e.g. [Pottmann &Wallner, 2001, Theorem 6.1.4])
and closely related to the simple fact that the Gauss image of a developable surface
is a spherical curve, which has an osculating circle at each of its regular points.

Lemma 2.2.1. Along each ruling 𝑟 , a nonplanar developable ruled surface 𝑆 has second
order contact with a rotational cone Γ (osculating cone). The vertex of this cone is the
singular point of 𝑟 (regression point). Γ is a rotational cylinder for a cylindrical ruling
𝑟 (regression point at innity) and it degenerates to a plane if 𝑟 is an inection ruling.

Let us add a bit more detail for the generic case where 𝑆 is the tangent surface
of a space curve, 𝑆 : x(𝑢, 𝑣) = c(𝑢) + 𝑣 ¤c(𝑢). This so-called regression curve c(𝑢) is
a singular curve on 𝑆 . The osculating plane at c(𝑢), spanned by ¤c, ¥c, is the constant
tangent plane of 𝑆 along a ruling (isoparameter line 𝑢 = 𝑐𝑜𝑛𝑠𝑡 ). If 𝑢 is an arc length
parameter, then the Frenet frame at c(𝑢) is given by the tangent vector e1 = ¤c, prin-
cipal normal e2 = ¥c/𝜅 (with curvature 𝜅 = ‖¥c‖), and the binormal vector e3 = e1×e2.
The Frenet equations can then be written in the form ¤e𝑖 = d×e𝑖 . Here d = 𝜏e1+𝜅e3 is
the so-called Darboux vector, where 𝜏 denotes the torsion. The Darboux vector is the
direction vector of the osculating cone Γ. This means that the angle 𝜙 between cone
axis and ruling satises cot𝜙 = 𝜏/𝜅 =: 𝑘 , a value which is called conical curvature of
the developable surface at the ruling.

The Gauss image of a rotational cone Γ is a circle𝐶 on 𝑆2 which becomes a great
circle if Γ is a cylinder and degenerates to a point for a plane Γ. So all 2nd order local
approximations addressed above have a planar Gauss image curve 𝐶 . However, a
planar Gauss image𝐶 of a surface Γ does not yet imply that Γ is a cone, while Γ must
be a cylinder if𝐶 is a great circle and a plane if𝐶 is just a point. So let us discuss the
case of a small circle𝐶 as Gauss image of a surface. These surfaces are well studied in
classical dierential geometry and known as surfaces of constant slope. They are the
tangent surfaces of curves 𝑐 of constant slope. Their tangents form a constant angle
with a certain direction in space, which is obviously the rotational axis of the circle𝐶 .
For a detailed study of these surfaces, we refer to [Pottmann &Wallner, 2001, Section
6.3]. The increased degrees of freedom compared to the osculating cone allow us to
increase the local approximation of an arbitrary developable surface by one with a
planar Gauss image:

Theorem 2.2.2. At each regular point 𝑝 of a developable ruled surface 𝑆 , there is a
developable surface Γ with a planar Gauss image, which has second order contact with
𝑆 along the entire ruling through 𝑝 and interpolates a curve 𝑎 ⊂ 𝑆 through 𝑝 .

10



2.2 Fundamentals

Proof. We omit the cases where 𝑆 is a plane or a cylinder, since these surfaces already
have a planar Gauss image curve. So we are left with cones and tangent surfaces 𝑆 .
We pick the osculating cone Γ𝑝 of 𝑆 along the ruling 𝑟𝑝 through 𝑝 and intersect 𝑆 with
the plane 𝐴 through 𝑝 which is orthogonal to the axis of Γ𝑝 . This yields the curve
𝑎. Note that the plane 𝐴 intersects the cone Γ𝑝 in a circle, which is the osculating
circle of 𝑎 at 𝑝 . The construction of the developable surface Γ proceeds as follows:
Through each tangent of 𝑎 we compute the two planes which form the same angle
with the axis of Γ𝑝 as Γ𝑝 does. Among these two planes, we select the one which is
closer to the corresponding tangent plane of 𝑆 . Then, the envelope of this family of
planes is the desired developable surface Γ with a planar Gauss image described in
the theorem. By construction, Γ and 𝑆 share the osculating cone Γ𝑝 and thus have
second order contact along the ruling through 𝑝 . We could choose another curve
𝑎 ⊂ 𝑆 which lies transversal to the rulings of 𝑆 , but leave it with this special choice
as it simplies the further analysis.

•
𝑝

𝑆

𝑎

𝑟𝑝
Γ𝑝

𝑐

•
Γ

0

.06max

Figure 2.1: Local approximations of a developable surface 𝑆 , which is the tangent surface of a space curve
𝑐 . Left: The osculating cone Γ𝑝 at a point 𝑝 ∈ 𝑆 approximates 𝑆 to 2nd order along the entire ruling 𝑟𝑝 .
Right: A developable surface Γ as in Theorem 2.2.2 approximates 𝑆 even better, as is seen from the color
coding of Γ and Γ𝑝 according to their orthogonal distance to 𝑆 .

For that, we use a local (𝑥,𝑦, 𝑧) coordinate system with 𝐴 : 𝑧 = 0 and describe
the curve 𝑎 by its support function ℎ(𝑢). This means that we view 𝑎 as envelope of
its tangent lines

𝐿(𝑢) : 𝑥 cos𝑢 + 𝑦 sin𝑢 + ℎ(𝑢) = 0,
which form the angle𝑢 with the𝑦-axis and possess the signed distanceℎ(𝑢) from the
origin (if the positive side of 𝐿 is determined by the normal vector (cos𝑢, sin𝑢)). The
derivative with respect to 𝑢 is the curve normal, ¤𝐿(𝑢) : −𝑥 sin𝑢 +𝑦 cos𝑢 + ¤ℎ(𝑢) = 0.
Intersecting the two lines 𝐿, ¤𝐿, we obtain a parameterization of the curve 𝑎 as

a(𝑢) : 𝑥 = −ℎ cos𝑢 + ¤ℎ sin𝑢, 𝑦 = −ℎ sin𝑢 − ¤ℎ cos𝑢.

Dierentiating again yields the curvature centers (evolute) of a(𝑢) as a∗ (𝑢) = ¤𝐿 ∩ ¥𝐿,

a∗ (𝑢) : 𝑥 = ¤ℎ sin𝑢 + ¥ℎ cos𝑢, 𝑦 = − ¤ℎ cos𝑢 + ¥ℎ sin𝑢.

Thus, the signed curvature radius of a(𝑢) is 𝜌 (𝑢) = ℎ(𝑢) + ¥ℎ(𝑢).
Let 𝑝 be the point a(0) = (−ℎ(0),− ¤ℎ(0), 0). To shorten notation, we use the

notation ℎ(0) =: ℎ0 and likewise for the derivatives. Then the 𝑧-parallel line through
the curvature center a∗ (0) = ( ¥ℎ0,− ¤ℎ0, 0) is the axis of the osculating cone Γ𝑝 . With
𝑘 as conical curvature of Γ𝑝 and of 𝑆 at 𝑢 = 0, the vertex of Γ𝑝 has 𝑧-coordinate
𝑧 = (ℎ0 + ¥ℎ0)/𝑘 = 𝜌0/𝑘 . Planes 𝑃 (𝑢) through the tangents of a and with the same
inclination against the 𝑧-axis as Γ𝑝 have the equations

𝑃 (𝑢) : 𝑥 cos𝑢 + 𝑦 sin𝑢 − 𝑘𝑧 + ℎ(𝑢) = 0. (2.1)
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Their envelope is the desired approximation Γ of 𝑆 at 𝑝 with a planar Gauss image
and through a. Dierentiating with respect to 𝑢 yields planes ¤𝑃, ¥𝑃 whose equations
agree with those of ¤𝐿, ¥𝐿 and are therefore 𝑧-parallel planes through these lines. Recall
that rulings of Γ are obtained as intersections 𝑃 ∩ ¤𝑃 and the regression curve is found
as 𝑃 ∩ ¤𝑃 ∩ ¥𝑃 . As discussed in more detail in [Pottmann &Wallner, 2001, Section 6.3],
the regression curve of Γ lies in the 𝑧-parallel cylinder through a∗ and the intersec-
tions of Γ with planes 𝑧 = 𝑐𝑜𝑛𝑠𝑡 are translated osets of a. The intersection curve a1
of Γ with the plane 𝑧 = 1 is a translated version of the oset of a at distance 𝑘 and
therefore has a support function ℎ(𝑢) − 𝑘 . The ruling vectors r1 = a1 − a of Γ are
r1 (𝑢) = (𝑘 cos𝑢, 𝑘 sin𝑢, 1).

The intersection curve ā of 𝑆 with 𝑧 = 1 has a support function ℎ̄(𝑢) = ℎ(𝑢) −𝑘 +
𝑓 (𝑢). Due to the 2nd order contact at 𝑢 = 0, we have 𝑓 (0) = ¤𝑓 (0) = ¥𝑓 (0) = 0. Then,
the tangent planes of 𝑆 are

𝑇 (𝑢) : 𝑥 cos𝑢 + 𝑦 sin𝑢 + (𝑓 (𝑢) − 𝑘)𝑧 + ℎ(𝑢) = 0, (2.2)

and the ruling vectors of 𝑆 are r = ā − a,

r(𝑢) = ((𝑘 − 𝑓 ) cos𝑢 + ¤𝑓 sin𝑢, (𝑘 − 𝑓 ) sin𝑢 − ¤𝑓 cos𝑢, 1).

Now we have parameterizations of 𝑆 as s(𝑢, 𝑣) = a(𝑢) + 𝑣r(𝑢) and of Γ as g(𝑢, 𝑣) =
a(𝑢) + 𝑣r1 (𝑢), which concludes the proof. �

However, we want to go beyond that and estimate the distance between 𝑆 and its
approximation Γ, and compare it to the distance between 𝑆 and the osculating cone
Γ𝑝 .

We over-estimate the distances by measuring them in planes 𝑧 = 𝑐𝑜𝑛𝑠𝑡 = 𝑣 and
there between points with parallel tangents. This means that we measure distances
between points of the two surfaces which have the same parameter values (𝑢, 𝑣).
This distance 𝛿 (𝑢, 𝑣) between 𝑆 and Γ is given by

𝛿 (𝑢, 𝑣) = |𝑣 |‖r1 (𝑢) − r(𝑢)‖ = |𝑣 |
√︃
𝑓 (𝑢)2 + ¤𝑓 (𝑢)2 . (2.3)

We can also look at distances 𝛿 between the parallel tangents directly, which are in
view of equations (2.1) and (2.2),

𝛿 (𝑢, 𝑣) = |𝑣 𝑓 (𝑢) |.

For 𝑢 = 0 we get the ruling 𝑟𝑝 through 𝑝 and of course 𝛿, 𝛿 = 0.
Let us compare this with the approximation of 𝑆 by the osculating cone Γ𝑝 . The

cone is given by (2.1) where ℎ is replaced by the support function ℎ𝑐 of the osculating
circle c𝑜 of a at 𝑝 = a(0),

ℎ𝑐 (𝑢) = 𝜌0 + ¤ℎ0 sin𝑢 − ¥ℎ0 cos𝑢.

The parameterization of the osculating circle is

c𝑜 (𝑢) = ( ¥ℎ0 − 𝜌0 cos𝑢,− ¤ℎ0 − 𝜌0 sin𝑢, 0).

Thus, a parameterization of Γ𝑝 is given by c𝑜 (𝑢) + 𝑣r1 (𝑢), and the two errors 𝛿𝑝 , 𝛿𝑝
between 𝑆 and Γ𝑝 become

𝛿𝑝 (𝑢, 𝑣) = ‖c𝑜 (𝑢) − a(𝑢) + 𝑣 (r1 (𝑢) − r(𝑢))‖, 𝛿𝑝 (𝑢, 𝑣) = |𝑣 𝑓 (𝑢) + ℎ(𝑢) − ℎ𝑐 (𝑢) |.
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2.2 Fundamentals

To get better insight into the behavior of the errors, we insert Taylor expansions at
𝑢 = 0,

𝑓 (𝑢) = 𝑎3𝑢3 + . . . , ℎ(𝑢) = ℎ0 + ¤ℎ0𝑢 +
¥ℎ0
2 𝑢

2 + ℎ̈03 𝑢
3 + . . . .

The error vector between a and c0 now reads

c𝑜 (𝑢) − a(𝑢) = (−
¤𝜌0
3 𝑢

3 + . . . , ¤𝜌02 𝑢
2 +
¥ℎ0
6 𝑢

3 + . . . , 0).

Note that the quadratic term in the error vector is in tangential direction at 𝑝 , and
thus conrms the 2nd order contact between c𝑜 (𝑢) and a(𝑢) at 𝑝 . For the errors, we
nd the following expansions,

𝛿 (𝑢, 𝑣) = |3𝑎3𝑢2𝑣 + . . . |, 𝛿 (𝑢, 𝑣) = |𝑎3𝑢3𝑣 + . . . |,

and
𝛿𝑝 (𝑢, 𝑣) = |

¤𝜌0
2 𝑢

2 + 3𝑎3𝑢2𝑣 + . . . |, 𝛿𝑝 (𝑢, 𝑣) = |
¤𝜌0
6 𝑢

3 + 𝑎3𝑢3𝑣 + . . . |.

As expected, the approximation of 𝑆 by the osculating cone Γ𝑝 is not as good as with
Γ, since the deviation in the base plane 𝑧 = 0 (𝑣 = 0) adds to the error everywhere.
The appearance of the derivative ¤𝜌0 of the curvature radius 𝜌 (𝑢) at 𝑢 = 0 in the
lowest order term is no surprise, as for ¤𝜌0 = 0 the osculating circle c𝑜 has 3rd order
contact with a and 𝑆 at 𝑝 .

There is one exception which we did not cover here, namely if the ruling 𝑟𝑝
through 𝑝 is an inection ruling. In that case, Γ𝑝 degenerates to the tangent plane, and
one cannot parameterize directly via the tangent directional angle𝑢. Instead, one can
use another parameter 𝑡 , and work with a parameterization in support coordinates
(𝑢 (𝑡), ℎ(𝑡)), as in [Pottmann & Wallner, 2001, pp. 362-363].

Knowing that surfaces with a planar Gauss image approximate developable sur-
faces at each point so well, we can increase developability by enforcing local approx-
imations of this type through an optimization algorithm (see section 2.3).

2.2.2 Surfaces with a thin Gauss image

Our method will try to make the Gauss image of a B-spline surface thinner. After
that, it will lie in a region 𝑅𝜀 on the sphere which has at most geodesic distance 𝜀
to a curve 𝐶 ⊂ 𝑆2. Let us briey discuss the implications on a surface 𝑆 which has
a Gauss image in such an 𝜀-strip 𝑅𝜀 . For that, we pick a part of the surface without
an umbilic; there the principal curvature lines form a quadrilateral curve network
without singularities. For simplicity, let us just consider a patch P ⊂ 𝑆 in this region
which is bounded by four principal curvature lines and does not contain parabolic
points. Moreover, we select a square-like patch P, meaning that the average length
of the two pairs of opposite boundary curves is the same. The Gauss image 𝜎 (P)
of that principal patch P is a principal patch on 𝑆 ; corresponding curves on 𝑃 and
𝜎 (P) have parallel tangents at corresponding points, as they are principal directions
and thus eigendirections of the derivative of the Gauss map. As we exclude parabolic
points in P, the Gauss map is regular everywhere and thus locally injective.

The Gauss image 𝜎 (P) of P is squeezed into the thin region 𝑅𝜀 . Being contained
in 𝑅𝜀 , at least one family 𝐹1 of principal curvature lines on P must be mapped to very
short curves in 𝑅𝜀 . If this is not true for the other family 𝐹2 of principal curvature
lines; the Gauss image curves of that family must be nearly parallel to the central
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curve 𝐶 of 𝑅𝜀 . Thus, the Gauss images of curves in 𝐹1 will be nearly orthogonal
to 𝐶 (see Figures 2.11, 2.12). Their length can be bounded depending on the width
variation of 𝜎 (P). The shortening of curves in 𝐹1 through the Gauss map to a length
≈ 𝜀 implies that the curves themselves will be close to straight lines. A surface with
one family of straight principal curvature lines is exactly developable; our surface
is only an approximation of that. A more thorough investigation of the geometric
implications of a thin Gauss is left for future research.

(a) (b)
𝑆

𝜎 (𝑆)

𝑆 ′

𝜎 (𝑆 ′)𝑓1
𝑓2

𝐶1

𝐶2

𝐶3

Figure 2.2: (a) Example of a developable shape 𝑆 with curved folds 𝑓1, 𝑓2, and its Gauss image 𝜎 (𝑆) =
𝐶1 ∪𝐶2 ∪𝐶3. (b) Rounding the fold curves of 𝑆 , leads to shape 𝑆′ with Gauss image 𝜎 (𝑆′) which is not
thin.

Due to our focus on architectural geometry, we can exclude surfaces with wrin-
kles or folds appearing for example in cloth. These wrinkles are close to curves
formed by parabolic points and have one very high principal curvature. They are
not of interest in the present work, and are not characterized by thin Gauss images.
Some insight into the geometry of these folds can be obtained as follows: Consider
a planar sheet of material, mark a fold curve on it and bend it into a 3D shape 𝑆 ,
leading to a developable surface with a curved crease (for the local geometry of such
curved folds, see e.g. [Pottmann & Wallner, 2001, Section 6.5]. The two developable
surfaces on either side of the fold curve 𝑓 have curves 𝐶1,𝐶2 as Gauss images. Now
let us add a thin smooth blend to round o the fold curve 𝑓 . The Gauss image of that
blend surface will connect the two curves𝐶1,𝐶2 to a region which needs not be thin
at all. With a suciently small blending radius the shape 𝑆 can be arbitrarily close
to an exact developable surface and thus be nearly developable, but the Gauss image
will not be thin (see Figure 2.2).

Therefore, our approach of thinning the Gauss image implies the construction of
nearly developable surfaces, but the converse is not true. A nearly developable sur-
face needs not have a thin Gauss image, due to the phenomenon of wrinkles. For ma-
terials which allow only very little stretching, these wrinkles appear to be smoothed
versions of developable surfaces with curved folds, as indicated above. There is in-
teresting research on this phenomenon, combining geometry and physics; see e.g.
[Cerda et al., 2004]. However, we are not aware of any dierential geometric char-
acterization of nearly developable surfaces which does not use the planar unfolding.

2.2.3 Developable bicubic surfaces

We will use bicubic B-spline surfaces and thus it is appropriate to justify this choice.
When it comes to modeling nearly developable surfaces, our choice is natural due to
the approximation power of splines. The condition of one family of nearly straight
principal curvature lines is suciently soft to be modeled nicely with these splines.
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However, especially in our architectural application, we will model panel ar-
rangements also by bicubic B-spline surfaces, with knots of multiplicity three, which
are just 𝐶0 patchworks of bicubic polynomial patches. We want these polynomial
patches to be close to developable surfaces, in particular to right circular cones or
cylinders. Thus, we briey discuss developable bicubic surfaces.

Bicubic patches on tangent surfaces. The tangent surface of a polynomial cubic
c(𝑢) can be parameterized as

x(𝑢, 𝑣) = c(𝑢) + 𝑣 ¤c(𝑢),

and it is therefore a bicubic surface. In this form, the rulings are 𝑣-isoparameter
curves and an axis aligned rectangle in the parameter domain represents a patch
on the surface bounded by two rulings. There are other bicubic patches on that
surface, which are obtained as images of arbitrary parallelograms in the (𝑢, 𝑣)-plane.
Equivalently, one can obtain them as images of the unit square [0, 1]2 in a (𝑢, 𝑣)
parameter plane via an ane parameter change,

𝑢 = 𝑎0 + 𝑎1𝑢 + 𝑎2𝑣, 𝑣 = 𝑏0 + 𝑏1𝑢 + 𝑏2𝑣 .

Furthermore, special bilinear re-parameterizations where the rst equation remains
and the second one reads

𝑣 = 𝑏0 + 𝑏1𝑢 + 𝑏2𝑣 + 𝑏3𝑢𝑣,

also yield bicubic patches on that tangent surface.
Even the tangent surface of a polynomial quartic c(𝑢) has a bicubic parameteri-

zation. We write c = a4𝑢4 + a3𝑢3 + . . . + a0 in monomial form and parameterize its
tangent surface as

x(𝑢, 𝑣) = c(𝑢) + (−𝑢/4 + 𝑣) ¤c(𝑢),

which is a bicubic representation. A complete classication of all bicubic tangent
surfaces is an open problem. For our purposes it suces to see that tangent sur-
faces of quartic curves are included in this class of surfaces, which leaves sucient
exibility for modeling.

Bicubic patches on cones and cylinders. A cone with vertex v can be written as
x(𝑢, 𝑣) = v+ 𝑓 (𝑢, 𝑣)c(𝑢). To get a bicubic parameterization, we can use a cubic curve
c(𝑢) and a cubic polynomial 𝑓 (𝑢, 𝑣) = 𝑔(𝑣) or a quadratic curve (parabola) c(𝑢) and a
function 𝑓 (𝑢, 𝑣) of bi-degree (1, 3). In the former case, the cone is in general a cubic
surface, while in the latter case one parameterizes quadratic cones.

A cylinder x(𝑢, 𝑣) = a(𝑢) + 𝑓 (𝑢, 𝑣)r, with a ruling direction r, has a bicubic rep-
resentation when a(𝑢) is at most cubic and 𝑓 any bicubic function.

Developable bicubic patches with a planar Gauss image. This class of surfaces
includes all bicubic cylinders. Among the cones, only rotational cones are possible.
We can generate them from the special cone 𝑥2 + 𝑦2 = 𝑧2, and then apply uniform
scaling in 𝑧-direction and a rigid body motion. The special cone is parameterized by
a Pythagorean triple of bicubic functions 𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣), 𝑧 (𝑢, 𝑣) of the form

𝑥 (𝑢, 𝑣) = 2𝑎𝑏𝑤, 𝑦 (𝑢, 𝑣) = (𝑎2 − 𝑏2)𝑤, 𝑧 (𝑢, 𝑣) = (𝑎2 + 𝑏2)𝑤,
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where 𝑎(𝑢, 𝑣), 𝑏 (𝑢, 𝑣),𝑤 (𝑢, 𝑣) are bilinear functions. Bicubic tangent surfaces with a
planar Gauss image have a regression curve c(𝑢) of constant slope. It follows from
our considerations above that the tangent surface of a polynomial curve c(𝑢) of con-
stant slope and degree ≤ 4 is such a surface. These curves c(𝑢) are exactly the spatial
Pythagorean hodograph curves of degree ≤ 4. For their generation and degrees of
freedom, we point to the monograph by Farouki [2008, Chapter 21].

We have already mentioned rotational cones and note that rotational cylinders
do not possess an exact bicubic parameterization. This is due to the fact that a rota-
tional cylinder cannot carry a polynomial curve transversal to the rulings as it would
project onto a circle. While a circle does not have an exact polynomial parameter-
ization, it is possible to achieve good approximations with cubics (see [Vavpetič &
Žagar, 2019] and the references therein). This is sucient for our purposes.

Developable B-spline surfaces. If two algebraic developable surface patches meet
with 𝐶1 continuity at a common curve (dierent from a ruling), their set of tangent
planes agrees there. Due to the algebraic nature, agreement of the set of tangent
planes along a curve segment is sucient for the agreement of the set of tangent
planes everywhere and for agreement of the two algebraic surfaces. Therefore, any
developable B-spline surface with 𝐶1 continuity represents a single polynomial de-
velopable surface, unless the patches are joined along rulings. This latter case is used
in [Tang et al., 2016]. The former case is useful to represent appropriate trimmed
patches on polynomial developable surfaces, but not for increasing the exibility in
modeling the surfaces themselves.

A regular bicubic surface S parameterized by parameters𝑢, 𝑣 is developable when
the Gaussian curvature vanishes at every point (𝑢, 𝑣) ∈ 𝐷 of the surface. Based on
this denition of developable surfaces, we can compute the algebraic complexity
of the developability property for S. Since the Gaussian curvature is the ratio of
the determinants of the second and rst fundamental forms, it is sucient for the
following equation to hold

det(II) = 0⇔ [S𝑢𝑢 , S𝑢, S𝑣] [S𝑣𝑣, S𝑢, S𝑣] − [S𝑢𝑣, S𝑢, S𝑣]2 = 0, ∀(𝑢, 𝑣) ∈ 𝐷
where [a, b, c] denotes the triple product of vectors a, b, c ∈ R3. Expanding and
grouping with respect to monomials in parameters 𝑢, 𝑣 we get a polynomial 𝑓 ∈
R[𝑥00, 𝑦00, 𝑧00, . . . , 𝑥33, 𝑦33, 𝑧33] [𝑢, 𝑣], where (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 , 𝑧𝑖 𝑗 ) ∈ R3, are the coordinates of
control point P𝑖, 𝑗 of surface S. Following this grouping, we count that polynomial 𝑓
has 191 coecients 𝑔𝑘 ∈ R[𝑥00, 𝑦00, 𝑧00, . . . , 𝑥33, 𝑦33, 𝑧33], where 𝑘 = 1, . . . , 191.

The requirement that polynomial 𝑓 vanishes for all values (𝑢, 𝑣) ∈ 𝐷 is satised
if 𝑓 is identically the zero polynomial, or equivalently all coecient polynomials
𝑔𝑘 vanish. This means that, if we need to guarantee these conditions precisely by
evaluating 𝑓 at dierent points on the surface, we would require a minimum of 191
points in a general position, namely points that would generate linearly independent
combinations of 𝑔𝑘 . In practice, since deg𝑢 (𝑓 ) = deg𝑣 (𝑓 ) = 13 we would dene a
14 × 14 regular grid over 𝐷 to acquire 196 evaluation points.

Alternatively, we can examine the algebraic variety 𝑉 (𝐼 ) of the ideal 𝐼 =

〈𝑔1, . . . , 𝑔191〉 generated by the coecient polynomials 𝑔𝑘 . Again, these are 191 ho-
mogeneous polynomials in 48 variables with deg(𝑔𝑘 ) = 6. Computing a reduced
Gröbner basis in an attempt to work with a minimal number of generators ℎ𝑚 ∈
R[𝑥00, 𝑦00, 𝑧00, . . . , 𝑥33, 𝑦33, 𝑧33], with𝑚 ≤ 191, for the ideal 𝐼 is computationally ex-
pensive, and is expected to produce generators that have increasingly higher degrees
[Dubé, 1990].
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2.3 Increasing developability

These observations only demonstrate that if we wish to increase interactivity in
the design process with developable surfaces, we need to avoid the computational
complexity of exact satisability and instead suciently approximate the developa-
bility property in an ecient way.

2.3 Increasing developability

Motivated by Theorem 2.2.2, we can try to increase the developability of a surface
𝑆 by ensuring that the Gauss images of well chosen regions on 𝑆 are nearly planar.
Using this basic idea, we now discuss the details of an optimization algorithm which
iteratively deforms a bicubic B-spline surface towards a nearly developable one.

2.3.1 Optimization setup

Surface. Let us consider a bicubic B-spline surface S : R2 → R3,

S(𝑢, 𝑣) =
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐵𝑖,3 (𝑢)𝐵 𝑗,3 (𝑣)P𝑖, 𝑗 , (2.4)

where 𝑢, 𝑣 ∈ [0, 1] and 𝐵𝑖,3 (𝑢), 𝐵 𝑗,3 (𝑣) are cubic B-spline basis functions dened on
uniform knot sequences in both directions. {P𝑖, 𝑗 } ∈ R3 are the control points of the
surface S, where 0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑚 and 𝑛,𝑚 ≥ 3. For more information on
B-spline surfaces and NURBS surfaces in general, we direct the reader to [Piegl &
Tiller, 1997, Section 4.4].

Surface S serves as the central object of study in this work. A generic surface of
the above form is non-developable and we aim to increase its developability by mod-
ifying the coordinates of its control points in a “minimal” way that will be dened in
the following sections.

We point out that surface S could be dened as any NURBS surface as long as
the weights of the control points and the knot vectors are xed and are not consid-
ered variables in the optimization process. This simplies and accelerates the opti-
mization procedure while not sacricing the quality of our results in the sense that
B-spline surfaces are adequate approximations of more general NURBS surfaces. For
readability, we dene S as an elementary B-spline surface while keeping in mind that
the following applies to more general surfaces.

Sampling the surface. We begin by sampling S, the surface that is to be optimized,
at a set of evaluation points {p𝑘 } ⊂ R3, which we will call sample points.

The approach we took for the sampling was to uniformly sample the parameter
space, motivated by the fact that convoluted areas on the surface S, i.e. areas where
the control points are concentrated and ner features emerge, would be represented
by more evaluation points inherently. We set the number of sample points 𝐿𝑢 , 𝐿𝑣
along the 𝑢, 𝑣 directions respectively and get a gridded pattern of points (𝑢, 𝑣) ∈
[0, 1

𝐿𝑢+1 , . . . , 1] × [0,
1

𝐿𝑣+1 , . . . , 1] on the parameter space, which in turn results in the
set of required sample points {p𝑘 } on the surface S.

The evaluation of points p𝑘 is given by formula 2.4, which is linear in the coordi-
nates of the control points with constant coecients. In practice, these coecients
are precomputed per point and stored. Whenever the control points are updated by
the optimization process or user input, we re-evaluate the position of the sample
points using the stored coecients.
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2 Increasing Developability

Grouping into patches. Next, we consider overlapping neighborhoods on the sur-
face, that wewill call patches, and that are represented as sets of sample points𝑈 𝑗 . We
construct the patches in such a way that neighboring patches will have non-empty
intersections, i.e. there exists at least one sample point that belongs to both patches.
The importance of this property will become clear in a later section.

S

𝑈 𝑗1 𝑈 𝑗2

p𝑘p𝑘

Figure 2.3: Surface S is sampled at various evaluation points p𝑘 . The sample points are then grouped to
overlapping groups. An example of such a grouping are groups𝑈 𝑗1 and𝑈 𝑗2 .

By uniformly sampling the parameter spacewe also simplify the process of group-
ing the sample points. The patches on the surface, as already mentioned, are repre-
sented by sets of sample points. By using the grid of points on the parameter space
we can determine the patches just by setting the number of sample points in each
of the 𝑢, 𝑣 directions that a patch will contain and the number of sample points that
will belong in the overlap region for each of the 𝑢, 𝑣 directions. Figure 2.3 focuses on
two such patches as an example of a simple grouping.

Normal computation. We associate each sample point p𝑘 with the unit normal n𝑘
of the surface at that point. The unit normals dene the Gauss map 𝜎 of the surface.
We compute the unit normal n𝑘 of the surface point p𝑘 as

n𝑘 B 𝜎 (p𝑘 ) =
S𝑢 × S𝑣
‖S𝑢 × S𝑣 ‖

,

where S𝑢 , S𝑣 are the partial derivatives of S with respect to 𝑢 and 𝑣 . Note that S𝑢 and
S𝑣 ,

S𝑢 (𝑢, 𝑣) =
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐵
(1)
𝑖,3 (𝑢)𝐵 𝑗,3 (𝑣)P𝑖, 𝑗 , S𝑣 (𝑢, 𝑣) =

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐵𝑖,3 (𝑢)𝐵 (1)𝑗,3 (𝑣)P𝑖, 𝑗 ,

are linear combinations of the control points with coecients which we precompute
and store to accelerate future computations [Piegl & Tiller, 1997, Section 1.5].

Gauss map of a patch. For every patch 𝑈 𝑗 , we denote by 𝑁 𝑗 the Gauss image of
𝑈 𝑗 , i.e. the set of unit normals n𝑘 corresponding to the sample points p𝑘 ∈ 𝑈 𝑗 ,

𝑁 𝑗 = 𝜎 (𝑈 𝑗 ) = 𝜎 ({p𝑘 }) = {n𝑘 }.

We associate each patch𝑈 𝑗 with a plane 𝐻 𝑗 ⊂ R3 with equation v𝑗 · x+𝑑 𝑗 = 0. Here,
v𝑗 is a unit normal vector of𝐻 𝑗 and 𝑑 𝑗 is the distance of𝐻 𝑗 from the origin. 𝐻 𝑗 serves
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2.3 Increasing developability

as the target plane for 𝑁 𝑗 . By optimization, we will enforce all normal vectors in 𝑁 𝑗

to lie on 𝐻 𝑗 and thus aim at a planar Gauss image of patch𝑈 𝑗 .

2.3.2 Initialization

The variables of the optimization are the coordinates of the control points P𝑖, 𝑗 and
the cutting planes𝐻 𝑗 that dene the Gauss image circles per patch𝑈 𝑗 . In this section,
we describe the initialization step of the optimization process.

Control points. We assume that we always have an initial state for the surface that
is either user dened or is provided by other means. We initialize the control point
coordinates with the values from this initial conguration. Those in turn will be used
to initialize 𝐻 𝑗 for every patch.

Cutting planes. We want to optimize for planarity of the Gauss image 𝑁 𝑗 of each
patch𝑈 𝑗 and thus associate with each patch𝑈 𝑗 a target plane 𝐻 𝑗 for 𝑁 𝑗 . Initializing
the target plane𝐻 𝑗 for each patch with the best tting plane to points n𝑘 ∈ 𝑆2 works
in the case that 𝑈 𝑗 is a developable patch. However, this method does not produce
the desired results if the patch is non-developable, as seen in Figure 2.4. To overcome
this, we use the following approach.

𝐵 𝑗

𝑁 𝑗𝑁 𝑗

𝑆2 𝐻 𝑗

Figure 2.4: Consider the Gauss image 𝑁 𝑗 of a group 𝑈 𝑗 . Plane 𝐵 𝑗 is the best tting plane to 𝑁 𝑗 , in
the sense that it minimizes the sum of squared distances of points 𝑁 𝑗 to the plane, and is considered
an undesired initialization. Using 𝐵 𝑗 as a target plane for the points in 𝑁 𝑗 will degenerate the Gauss
image to a single point, meaning patch𝑈 𝑗 will be at. Alternatively, plane 𝐻 𝑗 is the resulting plane from
optimization problem 1 and captures the overall main principal direction of patch𝑈 𝑗 . Plane𝐻 𝑗 is a better
initial target plane, since it will not necessarily lead to a 0-dimensional Gauss image.

Consider the main principal direction q𝑘 ∈ R3 of surface S at point p𝑘 , i.e. the
principal direction corresponding to the principal curvature with the maximum ab-
solute value, that is max{|𝜅1 (p𝑘 ) |, |𝜅2 (p𝑘 ) |} where 𝜅𝑖 : S → R, 𝑖 = 1, 2, are the
principal curvatures of a point on S. The principal curvatures and principal direc-
tions of a surface at a point on the surface are the eigenvalues and corresponding
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2 Increasing Developability

eigenvectors of the shape operator −𝑑𝑣N = −I−1II, where I, II are the rst and sec-
ond fundamental forms of the surface. We denote by 𝑄 𝑗 the set of main principal
directions q𝑘 corresponding to the points p𝑘 ∈ 𝑈 𝑗 .

We initialize 𝐻 𝑗 as the plane passing through the barycenter of 𝑁 𝑗 with unit
normal in the direction of the vector which is “as orthogonal as possible” to the
set 𝑄 𝑗 of main principal directions. Intuitively, we wish the initial cutting plane to
intersect the sphere at a circle whose tangent at every point c ∈ 𝑆2∩𝐻 𝑗 is “as parallel
as possible” to the main principal directions of the sample points corresponding to
the unit normals around c.

In this way, the cutting plane serves as a generalized main principal plane, or a
plane containing the main principal directions of every sample point in the patch.
For a patch that is non-developable, we wish to initialize this main principal plane by
using the main principal directions of the sample points weighted by a measure of
condence. A low weight indicates the diculty in distinguishing between the two
principal curvatures. Specically, we introduce weight𝑤𝑘 ∈ [0, 1] corresponding to
each sample point p𝑘 as

𝑤𝑘 = 1 − min{|𝜅𝑖 (p𝑘 ) |}
max{|𝜅𝑖 (p𝑘 ) |}

, 𝑖 = 1, 2 (2.5)

Now, for each patch𝑈 𝑗 we need to solve the following optimization problem.

Optimization problem 1 Plane initialization

minimize
∑︁

q𝑘 ∈𝑄 𝑗

𝑤𝑘 (v𝑗 · q𝑘 )2

subject to v2𝑗 = 1

Optimization problem 1 is a special case of minimizing a quadratic form under
a quadratic regularization constraint. Bringing the objective function into the form
v>𝑗 Qv𝑗 , the minimizer v∗𝑗 is the normalized eigenvector corresponding to the smallest
eigenvalue of Q. Then, plane 𝐻 𝑗 is given by v∗𝑗 · x + 𝑑 𝑗 = 0, with

𝑑 𝑗 = −v∗𝑗 ·
1
|𝑁 𝑗 |

∑︁
nk∈𝑁 𝑗

n𝑘 ,

where |𝑁 𝑗 | is the cardinality of 𝑁 𝑗 .

2.3.3 Problem formulation

We are now ready to formulate the central optimization problem of this chapter by
dening the relevant individual energy functionals.

Developability energy. We formulate the desired property of each patch to have
a planar Gauss image by introducing an appropriate energy term Ed. This energy
term measures per patch the total sum of distances of the normals n𝑘 ∈ 𝑆2 to the
target patch plane, that is the quantity∑︁

𝑗

∑︁
n𝑘 ∈𝑁 𝑗

(n𝑘 · v𝑗 + 𝑑 𝑗 )2, (2.6)
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2.3 Increasing developability

where 𝑗 is the indexing of the patches and v𝑗 , 𝑑 𝑗 are unit normal and distance from
the origin of target plane𝐻 𝑗 for patch𝑈 𝑗 . To avoid trivial solutions, we introduce the
following unit length constraint on the plane normals v𝑗 in the form of an additional
energy term, ∑︁

𝑗

(v2𝑗 − 1)2.

Additionally, the surface normals n𝑘 are computed as

n(𝑚)
𝑘

=
S(𝑚)𝑢 × S(𝑚)𝑣

‖S(𝑚−1)𝑢 × S(𝑚−1)𝑣 ‖
,

where 𝑎 (𝑚) denotes the value of variable 𝑎 at iteration step𝑚 in our iterative opti-
mization process. We use the constant norm ‖S(𝑚−1)𝑢 × S(𝑚−1)𝑣 ‖ from the previous
iteration when normalizing the current vector S(𝑚)𝑢 ×S(𝑚)𝑣 for the computation of the
surface normal n𝑘 . This is standard practice to ensure that the objective function is
polynomial.

All the above lead to an energy term of the form

Ed =
∑︁
𝑗

∑︁
n𝑘 ∈𝑁 𝑗

(n𝑘 · v𝑗 + 𝑑 𝑗 )2 + 𝜆1
∑︁
𝑗

(v2𝑗 − 1)2, (2.7)

where 𝜆1 is an appropriate weight for the unit length constraint.
The importance of having patches that are overlapping, or equivalently neigh-

boring patches containing common sample points, becomes evident at this point.
Each patch is optimized to have a Gauss image which is a subset of a spherical curve.
This can have a competitive eect between patches that are adjacent due to diverg-
ing target planes, and cause slow convergence. By having the patches share sample
points, we introduce a diusion factor to the optimization that ensures smoothness
of the resulting Gauss image curve.

𝐻 𝑗

𝑑 𝑗

𝑆2 𝑁 𝑗

v𝑗

Figure 2.5: The Gauss image 𝑁 𝑗 of a single non-developable patch 𝑈 𝑗 is a 2-dimensional subset of 𝑆2.
The cutting plane 𝐻 𝑗 serves as the target plane for the normals n𝑘 ∈ 𝑁 𝑗 .

Soft constraints. We also introduce a set of additional energy terms to the main
problem that constrain the output surface and aim to avoid degeneracies, produce
more aesthetically pleasing results and give control to the user over the proximity of
the resulting surface to a reference surface.
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2 Increasing Developability

The energy term Ec denotes a measure of the closeness of the resulting surface
S to a reference surface Sref, which can be either an arbitrary surface or the initial
conguration of the design surface. The implementation we follow for the closeness
energy term is based on the tangential distance minimization (TDM) [Pottmann et al.,
2004; W. Wang et al., 2006]. The energy term is dened as the sum of squared dis-
tances of sample points to the tangent planes at their closest points on the reference
surface. We use the already sampled points p𝑘 ∈ S and a set of sample points 𝑋 from
the reference surface Sref. If the reference surface is the initial surface then𝑋 = {p𝑘 };
otherwise, 𝑋 is an independent sampling. Then Ec is dened as

Ec =
∑︁
𝑘

[(p𝑘 − x𝑘 ) · N(x𝑘 )]2, (2.8)

where x𝑘 is the closest point to p𝑘 from the set of points 𝑋 in the Euclidean metric,
and N(x𝑘 ) is the unit normal of Sref at point x𝑘 . At each iteration the closest point is
updated. We utilize FLANN for the closest point query and refer to [Muja & Lowe,
2014] for the computational complexity.

A nal fairness energy term Ef = 𝑤f1Ef1 + 𝑤f2Ef2 is introduced to the objective
function that avoids degeneracies in the resulting surface and is widely used in mesh
optimization problems for the smoothing eect it provides. Specically, we denote
by Ef1 the sum of squared norms of the rst order dierences of the control points
in both grid directions, and by Ef2 the second order equivalent, namely

Ef1 =
∑︁
𝑖, 𝑗

(
‖P𝑖+1, 𝑗 − P𝑖, 𝑗 ‖2 + ‖P𝑖, 𝑗+1 − P𝑖, 𝑗 ‖2

)
,

Ef2 =
∑︁
𝑖, 𝑗

(
‖P𝑖+1, 𝑗 − 2P𝑖, 𝑗 + P𝑖−1, 𝑗 ‖2 + ‖P𝑖, 𝑗+1 − 2P𝑖, 𝑗 + P𝑖, 𝑗−1‖2

)
.

We assign𝑤f1 = 0,𝑤f2 = 1 in all the following applications unless stated otherwise.

Total energy. All energy terms Ed, Ec, Ef are assigned weights 𝑤d, 𝑤c, 𝑤f and col-
lected in the total energy for developability optimization,

E = 𝑤dEd +𝑤cEc +𝑤fEf. (2.9)

For details on the choice of weights, we refer to Section 2.5.

Increasing developability. Now our problem is reduced to the minimization of E.

Optimization problem 2 Increasing developability

minimize E = 𝑤dEd +𝑤cEc +𝑤fEf

The variables of E are the control points {P𝑖, 𝑗 } of S and the patch planes 𝐻 𝑗 ,
dened by v𝑗 and𝑑 𝑗 . The optimization problem 2 is an unconstrained nonlinear least-
squares problem. Any algorithm for nonlinear least-squares problem can be applied
in our case. We follow the standard Gauss-Newton method in our implementation
and experiments [Nocedal & Wright, 2006, Section 10.3].
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2.4 Panelization

2.4 Panelization

Motivated by applications in architecture, we consider the problem of approximating
a given arbitrary surface by a 𝐶0 continuous surface which consists of developable
patches. As we optimize for developability with help of a planar Gauss image, the
resulting surface patches include as important special cases rotational cylinders and
rotational cones. We will particularly focus on the constraints which ensure that
we obtain these special types of panels. Especially when working with glass, these
rotational panels are preferred because there are special machines for their produc-
tion. Figure 2.6 shows a recent example of an architectural freeform façade which
has been constructed with mainly cylindrical glass panels to reduce manufacturing
cost.

Figure 2.6: Side detail of Nur Alem, the main pavilion of the Astana EXPO 2017 Exhibition in Astana,
Kazakhstan. Mostly cylindrical panels were used to rationalize the curved transparent freeform façade
(dierent from the sphere).

2.4.1 Optimization setup

In this section, we will go through the dierences between the central method that
was presented in the previous sections and the variation for this new problem while
introducing any new concepts that will be of use.

Surface. The main object of study in this section will be a surface S consisting of a
grid of subsurfaces S(𝑟 ) , with𝐶0 continuity at the inner boundaries. Specically, S is
a composite surface

S = ∪
𝑟
S(𝑟 ) ,

where 𝑟 indexes the set of subsurfaces. Each S(𝑟 ) is a bicubic Bézier surface of the
form

S(𝑟 ) (𝑢, 𝑣) =
3∑︁

𝑖=0

3∑︁
𝑗=0

𝐵𝑖,3 (𝑢)𝐵 𝑗,3 (𝑣)P(𝑟 )𝑖, 𝑗
(2.10)
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and will be referred to as a panel in the following. This conguration represents the
paneling of a freeform surface. The 𝐶0 continuity of neighboring panels is achieved
by having common control points at the corresponding edges and models the con-
nectivity and continuity found between distinct panels of a panelized surface. This
allows for panelizations that are not in a grid conguration and can easily generalize
to more complex surfaces of arbitrary topology just by appropriately “gluing” panels
at their edges.

Sampling and grouping. We sample surface S at a collection of sample points {p𝑘 }
and group them to groups𝑈𝑟 , each corresponding to a single panel. The same follows
for the corresponding surface normals 𝑁𝑟 and the associated panel planes 𝐻𝑟 .

We can therefore dene the developability energy term per panel as

E (𝑟 )d =
∑︁

n𝑘 ∈𝑁𝑟
(n𝑘 · v𝑟 + 𝑑𝑟 )2 + 𝜆1 (v2𝑟 − 1)2, (2.11)

where 𝜆1 is an appropriate weight, and the developability energy term of surface S
as

Ed =
∑︁
𝑟

E (𝑟 )d . (2.12)

This modied grouping of the sample points {p𝑘 } allows for the individual opti-
mization of each panel, which will be studied in more detail in a following section.

Rotational panels. By introducing the additional constraint that the panel should
be a rotational surface, we are optimizing for the panels to be either rotational cones
or rotational cylinders. Rotational surfaces have the property that the surface normal
lines are coplanar with the axis of rotation. Let 𝐿1, 𝐿2 be two lines in R3 with Plücker
coordinates (a, ā), (b, b̄) ∈ R6 respectively. The two lines are coplanar if their Plücker
coordinates satisfy the condition

a · b̄ + ā · b = 0. (2.13)

Recall that the Plücker coordinates (a, ā) ∈ R6 of a line 𝐿 ⊂ R3 are given by the
direction vector a ∈ R3 and the moment vector ā = p × a ∈ R3, where p ∈ R3 is a
point on 𝐿. Obviously, these coordinates are not independent, but satisfy the Plücker
condition a · ā = 0. For more information on line geometry and relevant applications,
we refer to the literature [Pottmann & Wallner, 2001, Section 2.1].

Consider now the Plücker coordinates (n𝑘 , n̄𝑘 ) ∈ R6 of the normal lines at the
sample points of a panel 𝑈𝑟 and of the unknown axis of rotation (a𝑟 , ā𝑟 ) ∈ R6. The
desired property that the panel is a rotational surface can be expressed as a𝑟 · n̄𝑘 +
n𝑘 · ā𝑟 = 0 ∀n𝑘 ∈ 𝑁𝑟 . Thus, the problem of optimizing for rotational surface panels
can be formulated as minimizing the energy∑︁

𝑟

∑︁
n𝑘 ∈𝑁𝑟

(a𝑟 · n̄𝑘 + n𝑘 · ā𝑟 )2, (2.14)

under the constraint that (a𝑟 , ā𝑟 ) describe a line, i.e., satisfy the Plücker condition
a𝑟 · ā𝑟 = 0, and the unit length constraint a2𝑟 = 1 on the axis direction a𝑟 .

At this point, we focus on the fact that for a rotational panel 𝑆 (𝑟 ) with planar
Gauss image, the normal v𝑟 of the plane 𝐻𝑟 containing the Gauss image and the
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2.4 Panelization

𝑈𝑟

p𝑘
n𝑘

𝐻𝑟 𝐻𝑟 ∩ 𝑆2

Figure 2.7: We focus on a single panel S(𝑟 ) of a panelized surface S. We are optimizing for the endpoints
of normals n𝑘 corresponding to the sample points p𝑘 ∈ 𝑈𝑟 of panel S(𝑟 ) to lie on the same plane 𝐻𝑟 .

direction of the rotation axis a𝑟 coincide. Using this fact, we denote the Plücker
coordinates of the rotation axis by (v𝑟 , v̄𝑟 ).

By making this adaptation, we have covered the unit length constraint on the
rotation axis direction by the corresponding constraint on the target plane normal
in (2.11). The Plücker condition is added as an additional energy term with an appro-
priate weight 𝜆2. Considering all the above, the resulting rotationality energy term
Er is of the form

Er =
∑︁
𝑟

∑︁
n𝑘 ∈𝑁𝑟

(v𝑟 · n̄𝑘 + n𝑘 · v̄𝑟 )2 + 𝜆2
∑︁
𝑟

(v𝑟 · v̄𝑟 )2 . (2.15)

While the Plücker coordinates of the normal lines are initialized in the optimiza-
tion problem with their current values in the conguration of surface S, the axis of
rotation (v𝑟 , v̄𝑟 ) of every panel 𝑈𝑟 remains unknown at this point or, assuming the
panels are in generic conguration, does not exist at all. An appropriate initialization
for the Plücker coordinates of the axis of rotation of each panel is given by methods
used in kinematic surface reconstruction applications, where the problem of tting
a velocity eld to a set of surface normals is studied [Liu, Pottmann, & Wang, 2006;
Pottmann & Randrup, 1998]. It follows the same thought process as the main idea
behind the energy term (2.14). In fact, it is exactly the same energy that we aim to
minimize but applied to each of the panels separately while considering the ane
normal lines xed. The resulting axis is the best tting one in the least-squares sense.
Formulating the above as an optimization problem leads us to the minimization of∑︁

n𝑘 ∈𝑁𝑟
(v𝑟 · n̄𝑘 + v̄𝑟 · n𝑘 )2. (2.16)

We already have an appropriate initialization for the target plane normal v𝑟 , de-
scribed in optimization problem 1. Thus, the objective function (2.16) is a quadratic
function of the moment vector v̄𝑟 . The latter is orthogonal to v𝑟 and therefore can
be expressed as

v̄𝑟 = 𝜇1b1 + 𝜇2b2,
where b1, b2 ∈ R3 form a basis of the plane perpendicular to v𝑟 . Substitution into
(2.16) yields a quadratic function in 𝜇1, 𝜇2 and the optimal values of 𝜇1, 𝜇2 are the
solutions of a linear system.

2.4.2 Problem formulation

Thus, the surface paneling problem is the following variation of the optimization
problem 2, and is solved with the same approach.
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2 Increasing Developability

Optimization problem 3 Surface paneling

minimize E = 𝑤dEd +𝑤rEr +𝑤cEc +𝑤fEf

Individual panel treatment. Until now we have shown how to optimize the pan-
eling of surface S in a global fashion. Since we dened the energy term E (𝑟 )d per
panel, this approach can be customized to consider each panel separately, achieving
in the process increased control over the resulting panelization. We use the following
obvious fact:

Lemma 2.4.1. Let panel S(𝑟 ) be a rotational surface and 𝐻𝑟 be a plane such that the
Gauss image of the panel is entirely contained in plane 𝐻𝑟 . Then the panel type is
determined by the distance 𝑑𝑟 of plane 𝐻𝑟 from the origin 𝑂 . Specically,

1. If 𝑑𝑟 = 1 then S(𝑟 ) is planar.

2. If 𝑑𝑟 = 0 then S(𝑟 ) is a cylinder of revolution.

3. If 𝑑𝑟 ∈ (0, 1) then S(𝑟 ) is a cone of revolution whose rulings form the angle
arcsin𝑑𝑟 with the rotation axis.

This oers a good way to aim at cylindrical or conical panels with prescribed
opening angle by setting the according values of 𝑑𝑟 in the energy term E (𝑟 )d in (2.11).

It is often the case in industrial applications that individual adjustments need
to be made to the panelization for reasons that include aesthetics and the overall
cost of the project. The advantages of the individual treatment of the panels become
apparent in such cases, and the aforementioned main pavilion of the Astana EXPO
2017, shown in Figure 2.6, serves as an example. In that project, apart from the
cylindrical panels which were the main ingredient of the panelization, double curved
panels were also utilized in areas that the use of cylindrical panels would negatively
aect the aesthetics of the result. Thus, by integrating a singular panel management
strategy to the optimization we have the ability of dealing with isolated problematic
areas without sacricing the quality of the overall panelization.

2.5 Experiments and results

Example 2.5.1. In this example, we consider ameshM which originated from scan-
ning a thin deformed leather patch. The deformation was introduced to the material
in the form of local stretches along its surface which result in areas of nonzero Gaus-
sian curvature.

(a)

M

(b)

S

(c)

Figure 2.8: (a) The conguration of the deformed leather patch. (b) Mesh acquired from scanning the
leather material. (c) The material’s geometry is represented as a B-spline surface.

26



2.5 Experiments and results

To apply our algorithm for increasing developability, we rst t the data with a
bicubic B-spline surface S of the form (2.4) with 7 × 13 control points. This is done
using the TDM optimization framework for surface tting described in section 2.3.3.
We refer to the initial conguration of surface S, given by the tting optimization,
as S0. Following the procedure described in section 2.3.1, we sample the resulting
surface S uniformly along the parameter space at 30 × 60 evaluation points p𝑖, 𝑗 , 𝑖 ∈
[1, 30], 𝑗 ∈ [1, 60]. We then group p𝑖, 𝑗 in patches 𝑈𝑙,𝑚 , each one containing 5 × 5
points with an overlap in both directions of 2 points between neighboring patches,
i.e. 𝑈𝑙,𝑚 = {p𝑖, 𝑗 | 𝑖 ∈ [3𝑙 − 2, 3𝑙 + 2], 𝑗 ∈ [3𝑚 − 2, 3𝑚 + 2]}. This completes the
initialization of the optimization algorithm of problem 2.

𝜎 (S0) 𝜎 (S5) 𝜎 (S15) 𝜎 (S60)

S0 S5 S15 S60
−4 · 10−7 4 · 10−7

Figure 2.9: The Gauss map (top) and the Gaussian curvature (bottom) of surface S for dierent numbers
of iterations, namely at 0, 5, 15 and 60 (S𝑡 denotes the optimized surface at 𝑡 iterations). The length of the
surface has been scaled to be approximately 1.

We introduce to the optimization process a closeness energy term of the form
(2.8) with relatively small weight to ensure proximity of S to its original position S0.
As described before, this is implemented using the TDM framework. We consider
the original surface S0 as the reference surface and use the already sampled points
p𝑖, 𝑗 of surface S as the evaluation points of the TDM algorithm. In our experiments,
we observed that using this competing low-weight term in our main optimization
procedure constrains the solution space by avoiding trivial solutions and producing
results that are more desirable from the designer’s point of view.

Figure 2.10 reveals the inner workings of the developability algorithm, which
clearly produces a “thinner” Gauss image for the resulting surface and also illustrates
a comparison between the original surface S0 and the resulting surface S. Figure 2.9
shows the Gauss map and the Gaussian curvature of the surface for several interme-
diate iterations of the optimization. The detailed statistics for this example are given
in Table 2.1.

We already discussed in section 2.2.2 that the straightening of one family of prin-
cipal curvature lines of S compared to the principal curvature lines of the initial
surface S0 is an alternative indication of the increase in developability. Figure 2.11
demonstrates the straightening eect in this example. Also illustrated is that the
preimage of a small collection of points in one of the "thinner" parts of the Gauss
image corresponds to one of the approximate rulings of the surface.
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2 Increasing Developability

(a)

𝜎 (S0) 𝜎 (S)

(b)

S0S

(c)

Figure 2.10: (a) The Gauss image of the initial conguration of B-spline surface S0 representing the
leather material. (b) The Gauss image of the optimized surface S. (c) The optimized B-spline surface S in
solid color compared to the transparent initial surface S0.

S0

(a)

S L

(b)

𝜎 (S)

𝜎 (L)

(c)

Figure 2.11: Visualization of the principal curvature lines. (a) The principal curvature lines of the initial
surface S0. (b) The principal curvature lines of the optimized surface S. Highlighted in red and extended
slightly for clarity, one such principal curvature line L, which also approximately corresponds to the
preimage of a small collection of points around the “thin” part of 𝜎 (S) . (c) The Gauss image 𝜎 (S) of the
optimized surface S. The Gauss image of L is highlighted in red.

S
𝑆2

P

𝜎 (P)

Figure 2.12: We consider a nearly developable patch of a surface S and the two families of principal
curvature lines of S (blue and orange lines) over that patch. These families dene a principal net denoted
with P. The Gauss image 𝜎 (P) of the net is displayed on the right.

Number of... Weights Final energies Number of Time [𝑠]

Ctrl.pts Patches Variables 𝑤d 𝑤c 𝑤f Ed Ec Ef iterations 𝑇total 𝑇solver 𝑇iter

91 200 1073 100 0.01 0.1 2.54 1.8 0.74 60 121.76 0.13 2.03

Table 2.1: We present the detailed information for the optimization of the leather surface S. The number
of control points of S and the number of overlapping patches that cover the surface generate the number of
variables (3 per control point and 4 per patch-associated plane). The surface was evaluated at 1800 points
and each patch contained 25 points. The weights were chosen to favor the developability property. The
initial and intermediate total energies of the problem were E0 = 9328.17, E5 = 2103.75, E15 = 356.702
while the order of the nal total energy E60 = 5.08 was achieved at iteration 26, where E26 = 5.38. Also
provided, the total time, time used by the Newton solver, and the time per iteration (in seconds), measured
on an Intel® Core™ i7-6700HQ processor.
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2.5 Experiments and results

Example 2.5.2. In this example, we will focus on optimizing two relatively simple
non-developable surfaces for planarity of their respective Gauss images. We start
with two bicubic Bézier surfaces S𝑎0 and S𝑏0 , where S𝑎0 is of mainly negative Gaussian
curvature and S𝑏0 of positive Gaussian curvature.

S𝑎0 S𝑎
S𝑏0 S𝑏

(a) (b)

Figure 2.13: The initial surfaces S𝑎0 , S
𝑏
0 and the optimized surfaces S𝑎 , S𝑏 are shown from an appropriate

angle to better showcase the emergence of rulings in the direction of least absolute principal curvature
on each of the surfaces.

We follow optimization problem 3, dened over a single panel, and utilize only
the closeness and developability terms. Given that the surfaces have approximately
planar Gauss images after the optimization, we also execute the following procedure
at a point set𝑈 on the surface to extrapolate the approximate rulings that are derived
from their planar Gauss images, dened by the target plane 𝐻 . We do this to present
a visual comparison between these induced rulings and the computed rulings on the
optimized surface.

Procedure Induced rulings
for all p ∈ 𝑈 do

n← 𝜎 (p)
q← closest point of n to target circle 𝐻 ∩ 𝑆2
r𝑡q ← vector tangent to target circle at q
r𝑜q ← vector tangent to 𝑆2 at q and orthogonal to r𝑡𝑞 ⊲ induced ruling direction
translate vectors r𝑡𝑞 , r𝑜𝑞 to p

end for

The vector r𝑜𝑞 approximates the direction of the line generator of the surface at
point q. Moreover, for non-inection rulings and non-planar regions on the opti-
mized surfaces, vectors r𝑡q, r𝑜q correspond to the principal directions of the surface at
point q.

Figure 2.13 shows the surfaces before and after the optimization, while Figure
2.14 shows the resulting vectors from the Induced rulings procedure.

Fig. Number of... Weights Final energies Number of Time [𝑠]

No. Ctrl.pts Panels Variables Eval.pts 𝑤d 𝑤c Ed Ec iterations 𝑇total 𝑇solver 𝑇iter

2.13a 16 1 52 169 100 1 0.65 81.28 10 1.9 0.1 0.19
2.13b 16 1 52 169 100 1 1.45 99.21 10 2.05 0.02 0.2

Table 2.2: The statistics for the Gauss image planarity optimization of panel surfaces S𝑎0 and S𝑏0 . The
weights were chosen to favor the developability property. Also provided, the total time, time used by the
Newton solver, and the time per iteration (in seconds), measured on an Intel® Core™ i7-6700HQ processor.
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r𝑜

r𝑡
S𝑎

S𝑏
𝐻

(a) (b)

Figure 2.14: A top-down perspective of the optimized surfaces S𝑎 , S𝑏 is shown with the rulings super-
imposed on the surfaces (darker blue lines) as well as the resulting vectors from the predened Induced
rulings procedure. We draw attention to the comparison between the orthogonal vectors r𝑜 (orange) and
the direction of the rulings (vanishing principal curvature direction). Furthermore, vectors r𝑡 correspond
to the directions of nonzero principal direction.

Example 2.5.3. We provide here an introductory example of paneling a simple dou-
ble curved surface with a variable number of rotational cylindrical panels.

We consider a surface Sref which is a subset of the positive-Gaussian-curvature
part of a torus. The active surface S of the optimization consists of a 𝑁 × 1 grid of
bicubic panels. The initial conguration of S is given by tting surface S to Sref.

We optimize for the panels of S to be rotational cylinders in the followingmanner.
First of all, we use Lemma 2.4.1 and assign to each panel an energy term of the form
(2.11) with 𝑑𝑟 = 0 since we are interested in only cylindrical panels. We then solve
optimization problem 3 with equal weights assigned to Ed and Er, and relatively
smaller weights assigned to Ec and Ef.

Figure 2.15 shows the resulting panelization for dierent values of 𝑁 . We wish
to direct the reader’s focus to the curved boundary lines that follow the reference
design; a characteristic not present and inherently not possible without trimming in
previous approaches that utilized strips linear in one direction.

Sref

(a) (b) (c) (d) (f)

Figure 2.15: Paneling part of a torus with a dierent number of cylindrical panels. Both the cutting planes
𝑈𝑟 per panel S(𝑟 ) and the inner boundary curves follow the direction of the smaller radius circles that
dene the torus.
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2.5 Experiments and results

Fig. Number of... Weights Final energies Number of Time [𝑠]

No. Ctrl.pts Panels Variables 𝑤d 𝑤r 𝑤c 𝑤f E†d+r Ec Ef iterations 𝑇total 𝑇solver 𝑇iter

2.15b 40 3 132 102 1 1 0.1 0.043 9.97 5.05 5 1.12 0.02 0.22
2.15c 64 5 212 102 1 1 0.1 0.004 2.09 5.01 5 2.05 0.03 0.4
2.15d 124 10 412 103 10 1 0.1 0.003 0.26 7.11 5 2.99 0.05 0.6
2.15e 364 30 1212 103 10 1 0.1 0.0002 0.05 18.68 5 8.11 0.17 1.62
†Ed+r = Ed + Er

Table 2.3: The statistics for the paneling of the torus subsurface Sref for dierent numbers of panels.
Each panel was sampled uniformly at 4 × 4 points for the developability term and at 10 × 10 points for
the closeness term. The weights were chosen to favor the developability property. Also provided, the
total time, time used by the Newton solver, and the time per iteration (in seconds), measured on an Intel®
Core™ i7-6700HQ processor.

Example 2.5.4. We extend the previous example of optimizing a simple row of pan-
els to be of cylindrical type to the task of optimizing a grid of panels to be of any
developable type we have previously addressed for panels.

Motivated by the possible architectural applications of the algorithm presented in
this chapter, we use as a reference surface an architectural design recently realized
as the roof of the Department of Islamic Art at Musée du Louvre in Paris, France,
shown in Figure 2.16. The underlying surface is a highly non-developable surface
with a strong variation in the sign of Gaussian curvature. In this example, we set
forth to compute an alternative realization of the same surface by using rotational
conical and rotational cylindrical panels.

Figure 2.16: Detail from the Cour Visconti roof of the Department of Islamic Art at Musée du Louvre in
Paris, France.

The user input in this case is the freeform reference surface Sref, the desired num-
ber of panels in each direction of the grid that will constitute the panelization of the
surface and the preferred type of panels, which includes surfaces of constant slope
or the more specialized and more widely-used rotational surfaces of constant slope,
i.e. rotational conical and rotational cylindrical. The user, by adjusting the weights
of the dierent energy terms involved in the corresponding optimization problem
3, has inuence over the various desirable aspects of the resulting panelization. In
this particular example, we wish to use any of the types introduced before, namely
rotational conical, rotational cylindrical and planar panels.
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2 Increasing Developability

We present in Figure 2.17 the resulting panelization of the reference surface for
dierent panel grid resolutions. We set weight𝑤c, corresponding to the closeness of
S to Sref, relatively high to reinforce the resulting surface to not deviate signicantly
from the reference surface and closely follow the chosen design. The smoothness of
the boundary curves is controlled by the fairness energy term weight 𝑤f, which is
assigned a small value to ensure more visually pleasing results.

(a)Sref

(a)

(b)S

(b)

(c)S

(c)

Figure 2.17: (a) The freeform reference surface to be panelized. (b) A coarse panelization consisting of
70 panels. (c) A denser panelization consisting of 300 panels. Runtime for both the coarse and the ner
paneling was several minutes.

The coarse panelization of Figure 2.17b serves as a nice example of the dynamic
panel layout adaptation which aims to approximate the given reference surface while
satisfying the developability, rotationality and closeness constraints. On the con-
trary, by increasing the number of the panels utilized, we achieve the dense pan-
elization of Figure 2.17c. As expected the increased number of panels produces an
improved result, compared to the coarse equivalent. It not only better approximates
the reference surface but also satises to a higher degree the additional secondary
constraints, yielding a panelization of the reference surface that allows for a more
structured arrangement of the panels.

Nevertheless, both results are welcome since each one of them serves as a valid
panelization with specialized developables of the same architectural surface. Each
one of the two panelizations of this example shown in Figures 2.17b, 2.17c manages
to be architecturally aesthetically pleasing in its own style, while being realizable
only by rotational cylindrical and rotational conical panels; highlighting the freedom
of design expression that this method provides.

2.6 Discussion

In this chapter, we have introduced a methodology for increasing the developability
of surfaces through an optimization algorithm which aims at a thin Gauss image.
Our implementation uses B-spline surfaces, but an analogous approach could be for-
mulated for other surface representations as well. Moreover, we have presented a
novel paneling algorithm which—in contrast to prior work [Eigensatz et al., 2010]—
optimizes both for the panels and the curve network of panel boundaries, under the
constraint that panels are developable with a planar Gauss image and/or rotational.

Appropriate choice of weights leads to high-precision satisfaction of the hard
nonlinear constraints. The fairness and closeness terms act as regularizers to the op-
timization problem, which is formulated through simple polynomial energies. The
combination of the soft constraints and xed points, avoids degenerate results. The
complexity of the approach is derived by the degree of the surface to be optimized,
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2.6 Discussion

the reference surface (number of points of mesh representation) and number of eval-
uation points. In most applications, our experiments show that the computation time
is limited to several seconds to get satisfactory results.

The presented local shaping approach achieves to minimize the predened en-
ergies at every step, and guides iteratively the surface to an expected result. Any
unwanted results were limited to surfaces that could not satisfy adequately both the
closeness term and the developability term, meaning the result had to deviate con-
siderably from the reference to satisfy the developability constraint.

Among the limitations of this approach, we rst point to the lack of a material-
dependent measure for the deviation from developability. The thickness of the Gauss
image alone is not sucient for judging whether a panel, fabricated from hardly
stretchable material, can be easily bent into the computed shape. Moreover, our
current implementation for paneling is limited to a grid type arrangement of panels
and could benet from additional improvements to the optimizer.

The next chapter aims to address the rst point. We focus on glass as a material
and explore the deformation space of cold bent glass panels. Since glass is much
more easily bent than stretched, we could characterize the shapes that are attainable
through cold bending of an initially planar glass panel as nearly developable. While
we do not explicitly study the geometric properties of such a deformation space, we
still aim to capture it for practical usage, i.e. interactive design of cold bent glass
panelizations.
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Computational Design of Cold

Bent Glass Façades 3

3.1 Introduction

Curved glass façades allow the realization of aesthetically stunning looks for archi-
tectural masterpieces as shown in Figure 3.1. The curved glass is usually made with
hot bending, a process where the glass is heated up and then formed into shape us-
ing a mold or tailored bending machines for spherical or cylindrical shapes. While
unleashing designs from being restricted to at panels, this process is laborious and
expensive and thus an economic obstacle for the realization of exciting concepts such
as the NHHQ skyscraper project by Zaha Hadid Architects (Figure 3.10). As a cost-
eective alternative, in recent years architects have started exploring cold bending
[Beer, 2015]. Planar glass sheets are deformed by mechanically attaching them to a
curved frame. Cold bending introduces a controlled amount of strain and associated
stress in at glass at ambient temperatures to create double-curved shapes [Datsiou,
2017]. Compared to hot bent glass, it has the advantage of higher optical and geomet-
ric quality, a wide range of possibilities with regards to printing and layering, usage

Figure 3.1: Examples of Curved Glass Façades. Left: Louis Vuitton Foundation by Frank Gehry in Paris,
France (photo by Anzola, 2020). Right: Emporia by Gert Wingårdh in Malmö, Sweden (photo by Eklind,
2015).
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3 Computational Design of Cold Bent Glass Façades

Figure 3.2: Material-aware form nding of a cold bent glass façade. From left to right: initial and revised
panel layouts from an interactive design session with immediate feedback on glass shape and maximum
stress (red color indicates panel failure). The surface design is then optimized for stress reduction and
smoothness. The nal façade realization using cold bent glass features double-curved areas and smooth
reections.

of partially tempered or toughened safety glass, and the possibility of accurately es-
timating the stresses due to deformation [Fildhuth & Knippers, 2011]. Furthermore,
it reduces energy consumption and deployment time because no mold, heating of
the glass, nor elaborate transportation is required.

However, designing cold bent glass façades faces a challenging form nding pro-
cess. How to identify a visually pleasing surface that meets aesthetic requirements
such as smoothness between panels while ensuring that the solution is physically
feasible and manufacturable? Signicant force loads can occur at the connection
between glass and frame, and it is essential that the deformation of the glass stays
within safe limits to prevent it from breaking.

In this chapter, we present an interactive, data-driven approach for designing
cold bent glass façades. Starting from an initial quadrangulation of a surface, our
system provides a supporting frame and interactive predictions of the shape and the
maximum stress of the glass panels. Following a designer-in-the-loop optimization
approach, our system enables users to quickly explore and automatically optimize
designs based on desired trade-os between smoothness, maximal stress, and close-
ness to a given input surface. Our workow allows working on the 3D surface and
the frame only, liberating the designer from the need of considering or manipulating
the shape of at panels—the optimal shape of the at rest conguration of the glass
panels is computed automatically.

At a technical level, we aim to determine the minimum energy states of glass
panels conforming to the desired boundarywithout knowing their rest conguration.
Based on extensive simulations of more than a million panel congurations with
boundary curves relevant for our application domain, we observed the existence of
several (in most cases up to two) stable states for many boundary curves. Identifying
both minimum energy states without knowing the rest conguration and potentially
multiple stable states is a non-trivial problem and cannot be easily computed with
standard simulation packages. Furthermore, as a prerequisite for enabling interactive
design for glass façades, we need to solve this problem for hundreds of panels within
seconds.

To achieve these goals, we develop a learning-based method utilizing a deep neu-
ral network architecture and Gaussian mixture model that accurately predicts the
shape and maximum stress of a glass panel given its boundary. Training data for
the network is acquired from a physics-based shape optimization routine. Predic-
tions of the trained network not observed originally are re-simulated and used for
the database enrichment. Our model is dierentiable, fast enough to interactively
optimize and explore the shape of glass façades consisting of hundreds of tiles, and
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3.1 Introduction

Figure 3.3: Double-curved surface panelized using a planar quad mesh following the principal curvature
network (left). This is the smoothest possible panelization of this surface achievable with at panels [Pellis
et al., 2019]. The solution using cold bent glass panels designed with our method (right) shows much
smoother results. Bottom pictures show the corresponding zebra stripping for both solutions; clearly
smoother stripes are indicators of higher visual smoothness.

tailored to be easily integrated into the design workow of architects. As a proof-
of-concept, we have integrated our system in Rhino. We have carefully validated
the accuracy and performance of our model by comparing it to real-world examples,
and demonstrate its applicability by designing and optimizing multiple intricate cold
bent glass façades.

3.1.1 Related work

Interactive Design and Shape Optimization are areas that have a considerable history
in Computer Graphics research [Bermano et al., 2017; Bickel et al., 2018], including
tools for designing a wide variety of physical artifacts, such as furniture [Umetani
et al., 2012], cloth [Wol & Sorkine-Hornung, 2019], robotics [Megaro et al., 2015],
and structures for architecture [Eigensatz et al., 2010].

Motivated by the digitalization of manufacturing, there is an increased need of
computational tools that can predict and support optimizing the physical perfor-
mance of an artifact during the design process. Several approaches were developed
to guarantee or improve the structural strength of structures [Stava et al., 2012; Ulu
et al., 2017]. Focusing on shell-like structures, Musialski et al. [2015] optimized their
thickness such that it minimizes a provided objective function. More recently, Zhao
et al. [2017] proposed a stress-constrained thickness optimization for shells, and Gil-
Ureta et al. [2019] computed a rib-like structure for reinforcing shells, that is, adding
material to the shell to increase its resilience to external loads. Considering both aes-
thetic and structural goals, Schumacher et al. [2016] designed shells with an optimal
distribution of artistic cutouts in a manner that produces a stable nal result. While
we share the general goal of structural soundness, in our problem setting we cannot
change the thickness or material distribution. Additionally, even just determining
the feasibility of a desired bent glass shape requires not only solving a forward sim-
ulation problem, but also an inverse problem, as the rest shape of the glass panel
is a priori unknown. Finding an optimal rest shape is often extremely important.
Schumacher et al. [2018] investigate sandstone as building material that is weak in
tension, thus requiring computing an undeformed conguration for which the over-
all stress is minimized. Similarly, glass panels have a low tensile strength and are
subject to very high compression loads during the assembly process, which moti-
vates the nding of minimal energy panels.
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Notably, several methods have recently been proposed to design double-curved
objects from at congurations [Guseinov et al., 2017; Konaković-Luković et al.,
2018; Malomo et al., 2018; Panetta et al., 2019]. However, all these methods rely on
signicantly more elastic materials and are not targeted to be used within an inter-
active design pipeline. In our application, having an accurate estimation of the stress
is critical to predict panel failure and interactively guide designers towards feasible
solutions. The need to bridge the gap between accuracy and eciency motivates the
use of a data-driven approach.

Computational design of façades. We already partially covered the related work
on the panelization problem in 2. We continue the discussion here, aiming towards
the specic problem of panelizing a façade with cold bent glass panels.

We remind the reader that covering general freeform surfaces with planar quadri-
lateral panels is a fundamental problem in architectural geometry and has received a
lot of attention; see e.g. [Glymph et al., 2004; Liu, Pottmann, Wallner, et al., 2006; Liu
et al., 2011; Mesnil et al., 2017; Pottmann et al., 2015]. The diculties lie in the close
relation between the curvature behavior of the reference surface and the possible
panel layouts. Problems occur especially in areas of negative curvature and if design
choices on façade boundaries are not aligned with the curvature constraints imposed
by planar quad meshes (Figure 3.3). Using triangular panels, the problems are shifted
towards high geometric complexity of the nodes in the support structure [Pottmann
et al., 2015]. Eigensatz et al. [2010] formulated relevant aspects for architectural sur-
face paneling into a minimization problem that also accounted for re-using molds,
and thereby reducing production cost. Restricting the design to single-curved panels,
Pottmann et al. [2008] presented an optimization framework for covering freeform
surfaces by developable panels arranged along surface strips. However, glass does
not easily bend into general developable shapes, which limits the applicability of this
technique for paneling with glass.

A recent alternative for manufacturing double-curved panels is cold bending of
glass. A detailed classication and description of the performance of cold bent glass
can be found in [Datsiou, 2017]. Eversmann, Ihde, et al. [2016] explored simulations
based on a particle-spring method, a commercially available FE-analysis tool, and
physical prototyping of cold bent glass and compared the resulting geometries to the
measurements of the physical prototypes. For designing multi-panel façade layouts,
Eversmann, Schling, et al. [2016] calculated the maximum Gaussian curvature for a
few special types of double-curved panels. This dened a minimal bending radius
for exploring multi-panel façade layouts. While conceptually simple, we found this
approach too limiting for general curved panels and thus base our approach on a
data-driven method.

Machine learning for data-driven design. Finite Element methods (FEM) are
widely used in science and engineering for computing accurate and realistic results.
Unfortunately, they are often slow and therefore prohibitive for real-time applica-
tions, especially in the presence of complex material behavior or detailed models.

Dimensionality reduction is a powerful technique for improving simulation speed.
Reduced space methods, for example based on modal analysis [Barbič & James, 2005;
Pentland & Williams, 1989], are often used to construct linear subspaces, assuming
that the deformed shape is a linear combination of precomputed modes. Simulations
can then be performed in the spanned subspace, which, however, limits its accuracy,
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especially in the presence of non-linear behavior. Non-linear techniques, such as
numerical coarsening [D. Chen et al., 2015], allow to reduce models with inhomoge-
neousmaterials, but usually require to precompute and adjust material parameters or
shape functions [J. Chen et al., 2018] of the coarsened elements. Recently, Fulton et al.
[2019] proposed employing autoencoder neural networks for learning nonlinear re-
duced spaces representing deformation dynamics. Using a full but linear simulation,
NNWarp [Luo et al., 2020] attempts to learn a mapping from a linear elasticity sim-
ulation to its nonlinear counterpart. Common to these methods is that they usually
precompute a reduced space or mapping for a specic rest shape but are able to per-
form simulations for a wide range of Neumann and Dirichlet boundary constraints.
In our case, however, we are facing a signicantly dierent scenario. First, we need
to predict and optimize the behavior of a whole range of rest shapes, which are de-
ned by manufacturing feasibility criteria (in our case close to, but not necessarily
perfect rectangular at panels). Second, our boundary conditions are fully specied
by a low-dimensional boundary curve, which corresponds to the attachment frame
of the glass panel. Instead, we therefore propose to directly learn the deformation
and maximal stress by the boundary curve.

Recently, data-driven methods have shown great potential for interactive design
space exploration and optimization, for example for garment design which can be
used for animation [T. Y. Wang et al., 2019], or optimized tactile rendering based
on a data-driven skin mechanics model [Verschoor et al., 2020]. An overview of
graphics-related applications of deep learning can be found in [Mitra et al., 2019].
In the context of computational fabrication, data-driven approaches were used for
example for interactively interpolating the shape and performance of parameterized
CAD Models [Schulz et al., 2017], or learning the ow for interactive aerodynamic
design [Umetani & Bickel, 2018]. While these methods are based on an explicit inter-
polation scheme of close neighbors in the database [Schulz et al., 2017] or Gaussian
processes regression [Umetani & Bickel, 2018], in our work we demonstrate and
evaluate the potential of predicting the behavior and solving the inverse problem
of designing a cold bent glass façade using neural networks. This entails the addi-
tional challenge of dealing with multistable equilibrium congurations which, to our
knowledge, has not not been addressed before in a data-driven computational design
problem.

3.1.2 Contributions

The main contributions covered in this chapter are as follows:

◦ We train a mixture density network—a regression model capable of handling
multistable congurations—to accurately predict the shape andmaximal stress
of a cold bent glass panel. The model was trained on a dataset of more than
a million pre-computed simulations. This allows us to interactively navigate
the design space of cold bent glass panels without the need of additional sim-
ulations.

◦ We integrate the data-drivenmodel to an interactive design tool that allows for
real-time feedback on panelizations of freeform façades with cold bent glass
panels. The dierentiability of the model allows for form-nding of practically
feasible and aesthetically pleasing cold bent glass façades through appropri-
ately formulated optimization.
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3 Computational Design of Cold Bent Glass Façades

◦ We provide multiple results, applications of the design tool, and validation of
the method through a proof-of-concept physical prototype.

3.1.3 Overview

We propose a method for the interactive design of freeform surfaces composed of
cold bent glass panels that can be seamlessly integrated in a typical architectural de-
sign pipeline. Figure 3.4 shows an overview of the design process. The user makes
edits on a base quad mesh that is automatically completed by our system to a mesh
with curved Bézier boundaries. Our data-driven model then interactively provides
the deformed shape of the cold bent glass panels in form of Bézier patches conform-
ing to the patch boundaries and the resulting maximal stress. This form nding
process helps the designer to make the necessary decisions to avoid panel failure.
At any point during the design session, the user can choose to run our simulation-
based optimization method to automatically compute a suitable panelization while
retaining some desirable features such as surface smoothness and closeness to the
reference design.

In Section 3.2, we show how the base mesh controlled by the user is extended
through special cubic Bézier curves to the set of patch boundaries. Each patch is de-
limited by planar boundary curves of minimum strain energy. These special Bézier
patch boundaries are convenient for modeling glass panels as they facilitate the con-
struction of supporting frames while providing a smooth approximation to the de-
sired design.

Bézier boundaries do not convey any information on the deformed or unde-
formed conguration of the panel. Our method uses simulation to compute both
congurations of the panel such that certain conditions are met which are derived
from manufacturing constraints. First, current panel assembly does not guarantee
𝐶1 continuity at the boundary between neighbor panels as it is very hard to enforce
normals along the frame in practice. Second, glass panels have low tensile strength
and are prone to breaking during the installation process in the presence of large
tangential forces. Following these criteria, we let the panel be dened by the bound-
ary curve of the frame, and compute both the deformed and undeformed shapes of
the panel such that the resulting total strain energy is minimal. This way, we ensure
our panelization has at least 𝐶0 continuity and the assembly of the panels requires
minimal work, thus reducing the chances of breakage. In Section 3.3, we describe in
detail the physical model and the computation of minimal energy panels.

Panel shape optimization provides us with a mapping between our design space
of Bézier boundary curves and theoretically realizable cold bent panels, in both un-
deformed and deformed congurations. Our material model also accurately esti-
mates the maximum stress endured by the glass. The user is free to interactively
edit the base mesh while receiving immediate feedback on the maximum stress, but
this neither ensures the panels will not break, nor fosters the approximation of a tar-
get reference surface. To achieve this goal, we solve a design optimization problem:
Bézier boundary curves are iteratively changed to minimize closeness to an input
target surface (and other surface quality criteria) while keeping the maximum stress
of each panel within a non-breaking range. In Section 3.5, we describe in detail our
formulation of the design optimization.

However, accurately computing minimal energy panels is computationally very
challengingwhichmakes physical simulation infeasible for being directly usedwithin
the design optimization loop. Furthermore, the mechanical behavior of glass panels

40



3.2 Geometry representation

M

Sref
MDN optimization

fabrication

 user interaction

Ŝp , �̂�p

Figure 3.4: Overview of our design tool workow. The user interacts with a quad mesh M and gets
immediate feedback on the (predicted) deformed shape Ŝp andmaximal stress �̂�p of glass panels dened by
their boundary p. When needed, an optimization procedure interactively renes the surface to minimize
safety and fairness criteria. Optionally, a reference surface Sref may be used as a target surface.

under compression often leads to multiple stable minimal energy congurations de-
pending on the initial solution. This complicates the optimization even more: not
only does the problem turn into a combinatorial one, but there is no algorithmic
procedure to count and generate all existing static equilibria given some boundary
curve. We address this challenge by building a data-driven model of the physical
simulation. First, we densely sample the space of Bézier planar boundary curves
and compute the corresponding minimal energy glass panels, together with an es-
timation of the maximum stress. Then we train a mixture density network (MDN)
to predict the resulting deformed shape and maximum stress given the boundary of
the panel. The MDN explicitly models multistability, and also allows us to discover
alternative stable equilibria that can be used to enrich the training set. In Section 3.4,
we elaborate on the characteristics of our regression network and our sampling and
training method. The trained regression network can be nally used to solve the
inverse design optimization problem. Once the user is satised with the design, our
shape optimization procedure generates the rest planar panels, which are ready to
be cut and assembled into a beautiful glass façade.

3.2 Geometry representation

We build a panelization of an architectural surface upon a quadrangular base mesh
M = (𝑉 , 𝐸, 𝐹 ), where vertices 𝑉 determine the panel corner points and each quad
face in 𝐹 is lled by one curved panel. In practice, the user interacts with the design
tool by making edits toM through any parametric mesh design method, in our case
Catmull-Clark subdivision from a coarser mesh (see Figure 3.2). This helps to achieve
fair base meshes and gives a reasonable control for edits. However, any other mesh
design scheme could be potentially used.

Each edge in 𝐸 is then automatically replaced by a planar cubic Bézier curve
dening the boundaries of the panel and the inner control points are predicted using
our regression model. In this section we describe the details for getting fromM to
the union of curved panels. Moreover, we show how to express the panels with a
minimal number of parameters which are later used for the data-driven model.

3.2.1 Panel parameterization

We model each glass panel as a bicubic Bézier patch S : [0, 1]2 → R3, dened by 16
control points P𝑖, 𝑗 , where 𝑖 , 𝑗 ∈ {0, 1, 2, 3}. The corner points P0,0, P0,3, P3,3, P3,0 are
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Figure 3.5: Parameterization of a panel boundary curve from a pair of tangent directions t1, t2 corre-
sponding to dual halfedges. The nal boundary curve𝐶𝑒 (orange) is computed by minimizing a linearized
bending energy.

vertices inM.

Panel boundary. Each edge 𝑒 ofM is associated with a patch boundary curve C𝑒 .
To describe its construction, we focus on a single edge 𝑒 with vertices v1, v2, and we
denote the unit vectors of the half-edges originating at v𝑖 by e𝑖 (see Figure 3.5). We
opted for planar boundary curves of the panels and thus we rst dene the plane Π𝑒

which contains C𝑒 . We do this by prescribing a unit vector s𝑒 ∈ R3 which lies in Π𝑒

and is orthogonal to 𝑒 . The two inner control points of the cubic curve C𝑒 lie on the
tangents at its end points. Tangents are dened via the angles 𝜃𝑖 they form with the
edge. Hence, the unit tangent vectors are

t𝑖 = e𝑖 cos𝜃𝑖 + s𝑒 sin𝜃𝑖 ,

In view of our aim to get panels which arise from at ones through bending, we
further limit the cubic boundary curves to those with minimal (linearized) bending
energy as described in [Yong & Cheng, 2004]. For them, the two inner control points
are given by v𝑖 +𝑚𝑖 t𝑖 , 𝑖 = 1, 2, with

𝑚1 =
(v2 − v1) · [2t1 − (t1 · t2)t2]

4 − (t1 · t2)2
,

and𝑚2 is obtained analogously by switching indices 1 and 2.
The boundary of S is thus fully parameterized by the 4 corner vertices P𝑖, 𝑗 , 𝑖, 𝑗 ∈

{0, 3}, the 4 edge vectors s𝑒 , and the 8 tangent angles 𝜃 (2 per edge). This parameter-
ization of panels is used in the regression model and the design tool implementation
described in Sections 3.4 and 3.5 respectively.

Panel interior. The interior control points P𝑖, 𝑗 , 𝑖, 𝑗 ∈ {1, 2} express the shape of a
panel enclosed by a given boundary. We found that within the admissible ranges of
the boundary parameters any optimal glass panel (see detailed description in Sec-
tion 3.3) can be very closely approximated by tting the internal nodes of the Bézier
patch. Moreover, we need to regularize the tting, since for a given Bézier patch,
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3.3 Panel shape optimization

it is possible to slide the inner control points along its surface while the resulting
geometry stays nearly unchanged.

We denote the vertices of the target panel shape x𝑖 and the corresponding vertex
normals n𝑖 . For every x𝑖 we nd the closest points y𝑖 on the Bézier surface and x
their coordinates in the parameter domain. The tting is then formulated as follows:

min
P𝑖,𝑗

(y𝑖 (P𝑖, 𝑗 ) − x𝑖 ) · n𝑖2𝐴𝑖 +𝑤B
∑︁
𝑘

𝐸2
𝑘
(P𝑖, 𝑗 ), 𝑖, 𝑗 ∈ {1, 2},

where 𝐴𝑖 are Voronoi cell areas per panel vertex, 𝐸𝑘 are lengths of all control mesh
edges incident to the internal nodes, and 𝑤B is the regularizer weight which we set
to 10−5. In order to achieve independence of rigid transformations, we express the
inner control points in an orthonormal coordinate frame adapted to the boundary.
The frame has its origin at the barycenter of the four corner points. Using the two
unit diagonal vectors

g0 =
P3,3 − P0,0
‖P3,3 − P0,0‖

, g1 =
P3,0 − P0,3
‖P3,0 − P0,3‖

,

the 𝑥-axis and 𝑦-axis are parallel to the diagonal bisectors, g1 ± g0, and the 𝑧-axis is
parallel to b = g0 × g1, which we call the face normal.

3.2.2 Compact representation

The panel boundary is used as input to a neural network to predict the shape and
stress of the minimal energy glass panel(s) conformal to that boundary. Thus, it is
benecial to reduce the input to the essential parameters, eliminating rigid transfor-
mations of the boundary geometry.

We consider d ∈ R6 to be the vector of the six pairwise squared distances of
vertices P𝑖, 𝑗 , 𝑖, 𝑗 ∈ {0, 3}. Given d, we can recover two valid mirror-symmetric em-
beddings of the 4 corner points. Assuming that the order of the vertices is always
such that

det(P0,3 − P0,0, P3,0 − P0,0, P3,3 − P0,0) ≥ 0

holds, the embedding is unique up to rigid transformations. We would assume such
a vertex ordering from now on. The plane Π𝑒 for each edge is then characterized
by its oriented angle 𝛾𝑒 with the face normal b. Finally, we dene p ∈ R18 (for panel
boundary) as the concatenation of the distance vector d, the 4 edge plane inclinations
𝛾𝑒 , and the 8 tangent angles 𝜃 (2 per edge). The vector p is used as input to the neural
network dened in Section 3.4.

3.3 Panel shape optimization

Our method leverages mechanical simulation to create a large dataset of minimal en-
ergy panels that conform to cubic Bézier boundaries. Given some boundary curves,
we are interested in nding deformed glass congurations that are as developable
as possible. Non-developable panels result in high tangential forces which compli-
cate the installation of the panel and increase the chances of breakage. By nding
the pair of deformed and undeformed shapes of the panel that minimize the strain
energy subject to a xed frame, we ensure the work required for its installation is
minimal and help to reduce the tangential force exerted at the boundary. This dataset
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0 MPa > 65

Figure 3.6: Comparison between the stress distribution produced with the typical shape operator used in,
e.g., Pfa et al., 2014 (left), and ours suggested in Grinspun et al., 2006 (right). The latter is much smoother
and results in a more reliable estimation of the maximal stress.

is used to train and test a model that predicts the deformed state and maximum stress
of such panels, which is suitable for rapid failure detection and inverse design. In this
section we describe in detail the simulation method used for the computation of the
deformed and undeformed states of a minimal energy glass panel.

3.3.1 Continuous formulation

We aim to dene a mechanical model that is suciently precise to accurately pre-
dict glass stresses under small strains, but still suitable for the fast simulation of a
very large number of deformation samples. Consequently, we make some reasonable
simplifying assumptions in a similar way to Gingold et al. [2004]. We geometrically
represent a glass panel as a planar mid-surface extruded in two opposite normal di-
rections by a magnitude ℎ/2, where the total thickness ℎ is much smaller than the
minimal radius of curvature of the reference boundary frame. We assume the lines
normal to the mid-surface always remain straight and do not undergo any stretch-
ing or compression. Under linearity assumption, the following expression for the
volumetrically-dened Green’s strain tensor E with oset 𝑧 in the normal direction
can be derived:

E(x, x̄, 𝑧) = Ē(x, x̄) + 𝑧Ê(x, x̄). (3.1)

Here x and x̄ are respectively the deformed and undeformed congurations of the
mid-surface, and Ê is the quadratic bending strain, equivalent to the shape operator
of the deformed mid-surface. The membrane strain Ē = 0.5(F𝑇 F − I) is the in-plane
Green’s strain tensor dened in terms of the deformation gradient F. We refer to the
original paper for a detailed explanation of the continuous formulation. Wewill focus
on our discrete formulation which has been previously considered by Weischedel
[2012].

3.3.2 Discrete formulation

We discretize glass panels using a triangulated surface mesh with 𝑁 nodes and 𝑀
edges. We separately consider themembrane and bending strains from Equation (3.1)
and dene two correspondingmid-surface energy densities integrated over the panel
thickness.
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3.3 Panel shape optimization

Membrane energy density. To discretize membrane strain, we assume piecewise
constant strains over FEM elements. In this context, in-plane Green’s strain is com-
puted as follows:

Ē =
1

16𝐴2

3∑︁
𝑖

𝑠𝑖 (t𝑗 ⊗ t𝑘 + t𝑘 ⊗ t𝑗 ), (3.2)

where 𝐴 is the triangle area, 𝑠𝑖 = 𝑙2𝑖 − 𝑙2𝑖 (𝑖’th edge strain), t𝑗 and t𝑘 are the two other
edge vectors rotated by −𝜋/2. For computing the corresponding membrane energy
density integrated over the panel thickness, we adopt the Saint Venant-Kirchho
model:

�̄� = ℎ

(
𝜆

2
(
Tr Ē

)2 + 𝜇 Tr (Ē2) ) , (3.3)

where 𝜆 and 𝜇 are respectively rst and second Lamé parameters.

Bending energy density. Bending strain is directly dened as the geometric shape
operator of the continuous surface. We compute a discrete approximation of the
shape operator using the triangle-based discretization suggested in [Grinspun et al.,
2006], which faithfully estimates bending strain regardless of the irregularity of the
underlying triangle mesh. In addition to mesh nodes, this metric considers addi-
tional degrees of freedom per edge dening deviation of mid-edge normals from the
adjacent triangle-averaged direction:

Ê =

3∑︁
𝑖

𝜃𝑖/2 + 𝜙𝑖
𝐴𝑙𝑖

(t𝑖 ⊗ t𝑖 ). (3.4)

Here, 𝜃𝑖 is a dihedral angle associated with the edge 𝑖 and 𝜙𝑖 is the deviation of
the mid-edge normal towards the neighbor triangles normals. Overall, the discrete
deformed state of the glass panel is dened with a vector x ∈ R3𝑁+𝑀 . We denote the
corresponding undeformed conguration with x̄. Bending energy density integrated
over the panel thickness, is then dened by the Koiter’s shell model [Koiter, 1966]:

�̂� =
𝜇ℎ3

12

(
𝜆

𝜆 + 2𝜇

(
Tr Ê

)2
+ Tr

(
Ê2
))
.7 (3.5)

Contrary to simpler thin shell bendingmodels commonly used in computer graphics,
e.g. [Pfa et al., 2014], the discrete shape operator suggested in [Grinspun et al., 2006]
more faithfully captures principal strain curves and outputs smoother stress distri-
butions (Figure 3.6). In the next section, we will describe how we nd the minimal
energy conguration corresponding to some given Bézier boundaries.

3.3.3 Minimal energy panels

Given a parametric design of a façade composed of a quadrangular mesh with Bézier
curves at the edges, we aim to nd a suitable panelization using cold bent glass. While
deforming a glass panel to conform to cubic boundaries is feasible, the fragility of this
material imposes nontrivial constraints on the maximum amount of stress tolerated
by the panels. Thus, we designed a method to compute the glass panel design with
the lowest possible strain energy while tting our installation constraints. Note that,
in practice, existing assembly methods do not preserve normals across neighboring
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3 Computational Design of Cold Bent Glass Façades

panels, and thus we restrict our problem to guarantee only 𝐶0 continuity. By com-
puting the fabricable panel with the lowest possible total strain energy, we minimize
the net work required to install the panel and notably reduce the local tangential
stress suered by the glass.

Overall, our pipeline takes as input the 16 control points of the Bézier boundaries,
and automatically computes both the deformed x and the undeformed x̄ congura-
tions of a planar glass panel that conforms to the boundary and has minimal energy.
This is done in two steps.

Initialization. At rst, we generate a regular mesh uniformly discretizing the pa-
rameter domain of the surface (a unit square), and lift the vertices to an initial Bézier
patch dened by the boundaries. In our pipeline, such a patch can be obtained in two
ways:

◦ Generated by our prediction model, when shape optimization is used to enrich
the database or to compute the undeformed shape of the nal design panels.

◦ Initialized as a surface patch with zero twist vectors at the corners (quad con-
trol mesh has parallelograms as corner faces) when shape optimization is used
to build the initial database.

The lifted mesh is conformally attened with minimal distortion. We uniformly re-
sample the boundary of this mesh targeting a total number of edges𝑀b and triangu-
late the interior using Delaunay triangulation with bounded maximal triangle area.
Finally, vertices of this mesh are mapped back to the parameter domain and lifted to
the initial Bézier patch. As a result, we obtain an initial conguration for a deformed
glass panel conforming to Bézier boundaries and its corresponding undeformed con-
guration.

Minimization. The initial solution is not in static equilibrium and has arbitrarily
high stresses. We compute the minimal energy conguration by minimizing the
discrete strain energies dened in Equations 3.3 and 3.5 over deformed x and unde-
formed x̄ congurations. We refer to the vector of all deformed nodes at the bound-
ary and the internal nodes as b and i respectively. To reduce the complexity of the
problem and keep a high quality triangulation of the undeformed conguration, we
assume internal nodes at the rest conguration ī are computed through Laplacian

Figure 3.7: Comparison between two alternative stable equilibria for a given Bézier boundary. The two
resulting panels produce radically dierent Gauss maps (right) leading to very distinguishable reection
eects.
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smoothing of the boundary vertices ī = Lb̄. Then, the aforementioned minimization
problem results:

min
i,𝜙,b̄

𝑊 (x, 𝜙, b̄) + 𝑅(b̄), (3.6)

where𝑊 is the sum of all strain energy terms and𝑅 is a regularization term removing
the null-space due to the translation and rotation of the undeformed conguration.
Note that we only consider undeformed boundary nodes b̄ as variables of the opti-
mization; after each solver iteration, we project internal nodes coordinates ī through
Laplacian smoothing. In addition, boundary nodes of the deformed conguration
remain xed and conformal to Bézier boundaries.

As it can be seen in Figure 3.7, minimizing Equation 3.6 does not always produce
a unique solution. For a given boundary, glass panels can potentially adopt multiple
stable equilibria corresponding to locally optimal shapes that depend on the initial-
ization of the problem. While for some boundary curves, there is a clearly preferred
shape which is more energetically stable than the rest, in other cases, several stable
equilibria are valid solutions that might be practically used in a feasible paneliza-
tion. Furthermore, maximum stress levels dier a lot between stable congurations.
Multistability impose two challenges for building a data-driven model of glass panel
mechanics. First, we do not know in advance the number of local minima that ex-
ist for a given boundary nor how energetically stable these congurations are in
practice; and second, we do not know how to initialize the minimization problem
in order to obtain such solutions. Both challenges motivated the use of a MDN as a
regressor for the shape and corresponding stress of the glass panels. In Section 3.4,
we describe our regression model and the methodology we followed to enrich the
database by discovering new stable equilibria through an iterative process.

3.3.4 Failure criterion

To estimate whether the panel is going to break, we compute the maximal engi-
neering stress across all the elements of the discretization. We estimate the stress
of an element by computing the rst Piola-Kirchho stress tensor P = FS. Here, F
is the deformation gradient of the element and S is the corresponding second Piola-
Kirchho stress tensor. In a similar fashion to [Pfa et al., 2014], we compute the
total stress of a panel using our estimation of the combined bending and membrane
strain introduced in Equation 3.1:

S
(
E(Ē, Ê, 𝑧)

)
= 𝜆 Tr(E)I + 2𝜇E. (3.7)

The maximal engineering stress is then evaluated as the maximum absolute sin-
gular value of P across all the elements. That is, for each element, we compute
S
(
E(Ē, Ê,±ℎ/2)

)
, where the bending contribution to the stress becomes maximum,

and pick the highest absolute singular value. The global maximal stress value is gen-
erally at most𝐶0-continuous with respect to the panel boundary curves whichmakes
its direct usage in a continuous optimization undesired. Instead, we compute an 𝐿𝑝 -
norm of maximal principal stress per element. In practice, we found that 𝑝 = 12
suces. We denote the resulting value 𝜎 and refer to it asmaximal stress for brevity.

Taking our assumptions, it is important to note that neither the overall shape nor
the maximal stress value changes for a given panel under uniform scaling. This im-
plies that only the ratio of the thin shell dimensions and the panel thickness matters.
For simplicity, we choose 1 mm as our canonical thickness for the simulations and
scale the obtained results accordingly for every other target thickness.
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Figure 3.8: Architecture of our data-driven model. The input is a panel boundary p; the model predicts
means ζ̂𝑘 , variances ξ̂𝑘 , and component weights π̂ for a two-component Gaussianmixture over the shape
and stress of the minimal-energy surface. Numbers in dense layers indicate the number of output units.

3.4 Data-driven model

We require a model that can eciently predict the shape and stress of the minimum-
energy panels for a given boundary. The simulation described in Section 3.3 calcu-
lates these quantities, but is too slow to incorporate in an interactive design tool.
Our data-driven model aims to predict the deformed shape and corresponding max-
imum stress of the panels more eciently. Moreover, it will allow us to calculate its
derivatives with respect to the input boundary, which is required for gradient-based
design optimization.

We therefore learn a statistical model that maps panel boundaries to the shapes
and stresses of minimal-energy conforming cold bent glass surfaces. Section 3.4.1 de-
scribes the model and training process. Training requires a large dataset of bound-
aries and the resulting panel shapes and stresses; in Section 3.4.2 we describe the
space of boundaries we sample from, and how the shape optimization and stress
computation of Section 3.3 is applied to them. To improve the results further, we
augment the dataset to better cover regions of the input space where predictions do
notmatch the training data due tomultistability of the glass panels (see Section 3.4.3),
and retrain the model on this enriched dataset.

3.4.1 Multi-modal regression model

Our prediction model takes as input a vector p ∈ R18 representing a panel boundary.
As noted in Section 3.3.3, several dierent surfacesmay conform to a given boundary,
corresponding to dierent local minima of the strain energy. Predicting a single out-
put therefore yields poor results, typically the average over possible shapes. Instead,
we use amixture density network (MDN)—a neural network model with an explicitly
multi-modal output distribution [Bishop, 2006]. For a given boundary, each mode of
this distribution should correspond to a dierent conforming surface.

Whereas training a neural network to minimize mean squared error is equiva-
lent to maximizing the data likelihood under a Gaussian output distribution, anMDN
instead maximizes the likelihood under a Gaussian mixture model (GMM) parame-
terized by the network. It must therefore output means and variances of a xed
number𝐾 of mixture components, as well as a vector π̂ of component probabilities1.

1In the remainder of this thesis, all variables with hats denote predictions from our data-drivenmodel,
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In our model, each component is a (12 + 1)-dimensional Gaussian with diagonal co-
variance, corresponding to the four interior control points of the shape, P𝑖, 𝑗 ∈ R3,
𝑖, 𝑗 ∈ {1, 2}, and stress 𝜎 , of one possible conforming surface. We denote the mean
of the concatenated shape and stress of the 𝑘 th mixture component by ζ̂𝑘 , and the
variance by ξ̂𝑘 ; both are output by the neural network and so depend on the input
boundary p, and network weights w.

Model architecture. We use a densely-connected model with six layers of 512 ex-
ponential linear units (ELU) [Clevert et al., 2015], with residual connections [He et al.,
2016] and layer-normalization [Ba et al., 2016] at each hidden layer (see Figure 3.8).
In simulation, we observed that a given boundary could potentially admit more than
two stable states. However, these cases were extremely rare and we therefore set
𝐾 = 2. This suces to capture the vast majority of stable states observed in our
dataset, and results in a low validation error. The output layer therefore has 54 units,
with no activation for the means ζ̂𝑘 , exponential activation for the variances ξ̂𝑘 , and
a softmax taken over the mixing probabilities π̂.

Model training. The model is trained to minimize the negative log-likelihood of a
training set T under the GMM:

L (T;w) = −
∑︁
(p,ζ)∈T

log
{
𝐾∑︁
𝑘=1

𝜋𝑘 (p;w) N
(
ζ
�� ζ̂𝑘 (p;w), ξ̂𝑘 (p;w))} (3.8)

where ζ is a true output for panel p, i.e. the concatenation of shape and stress from
one simulation run, andN represents a diagonal Gaussian density. We also add an L2
regularization term with strength 10−4 on the weights w, to discourage over-tting.

We use the stochastic gradient method Adam [Kingma & Ba, 2014] to minimize
the above loss function with respect to the network weightsw. We use a batch size of
2048, learning rate of 10−4, and early stopping on a validation set with patience of 400
epochs. We select the best model in terms of the validation loss obtained during the
training process. A single epoch takes approximately 30 seconds on a single NVIDIA
Titan X graphics card, and in total training takes around 20 hours.

Model output. For brevity in the remainder of the thesis, for a given panel boundary
p and for a possible state 𝑘 ∈ {1, 2}, we write:

◦ Ŝ𝑘p : [0, 1]2 → R3 for the Bézier surface patch which is dened by the boundary
p and the predicted interior control nodes from the mean of the 𝑘 th component
(i.e. the leading 12 elements of ζ̂𝑘 ).

◦ �̂�𝑘p for the stress value (i.e. the last element of ζ̂𝑘 ).

◦ 𝜋𝑘p for the 𝑘 th component probability 𝜋𝑘 (p; w).

Furthermore, we write Ŝp and �̂�p (i.e. without the 𝑘 superscript) to refer to the
best prediction for boundary p, which is determined by two factors:

1. if any of the component probabilities 𝜋𝑘p is greater than 95% we discard the
alternative and dene the corresponding shape/stress prediction as best, or

as opposed to values from the physical simulation.
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2. otherwise, the best is determined depending on the application, either as the
lower stress, the smoother shape, or the closer shape to a reference surface.

We discard components with 𝜋𝑘p < 0.05 since the modes with near-zero probability
imply a low level of condence in the corresponding prediction.

0

MPa

> 65

(b)

(a)

Figure 3.9: Left: Initial design includes panels exceeding stress limits (a) and is optimized for stress-
reduction (b). Right: two dierent façades designed with our tool.

3.4.2 Dataset construction

In order to train our prediction model, we require a dataset of boundaries that is
representative of our target application. These are then paired with the shapes and
stresses of conforming surfaces with minimal energy. Recall from Section 3.2 that a
panel boundary may be parameterized invariantly to rigid transformations, by cor-
ner pairwise squared-distances d, edge-plane inclinations γ, and halfedge tangent
directions θ. We generate boundaries by sampling these parameters from the ranges
and distributions described in Appendix A. Note that the physical model for the
deformed shape and stress is invariant under scaling of all geometric magnitudes;
we choose our sampling ranges so it would be possible to scale the results to panel
length-to-thickness ratios commonly used in cold bent glass façades (e.g., 150–600).
By applying the shape optimization described in Section 3.3 to these boundaries, we
obtain ne discrete meshes representing the deformed cold bent panels. We obtain a
Bézier representation of such panels by keeping the sampled boundaries and tting
interior control points to match the simulated surface using the method described in
Section 3.2.1. Plus, in our representation, any non-at panel geometry can be repre-
sented in four alternative ways depending on vertex indexing and can be mirrored
remaining valid. We therefore transform each simulated panel into eight samples by
permuting the vertex indexes and adding their mirror-symmetric representations.

In total, we simulated approximately 1.5 million panels, which corresponds to
12 million samples after vertex permutations and adding mirror-symmetric panels.
We reserved 10% of these samples as a validation set for tuning the optimization
hyperparameters and network architecture. To acquire such large amounts of data
requiring massive computations, we employed cloud computing.

3.4.3 Dataset enrichment

When a given boundary has multiple conforming panels, the physical simulation
returns only one of these determined by the twist-free Bézier patch initialization.
Conversely, our data-driven model always predicts 𝐾 = 2 states, though one may
have a very small mixture weight 𝜋𝑘 indicating it is unlikely to be a valid optimal
panel. We observed that after training, the model often predicts shapes for bound-
aries in its training set, that dier from those returned by the simulation—however,
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re-simulating these boundaries with dierent initialization recovers a solution close
to that predicted by the data-driven model. This observation suggests a method to
extend the dataset with new samples to improve prediction error.

Specically, we use the prediction from the model as an initialization for the
simulator, which is then likely to converge to a stable surface that was not reached
from the default initialization. The resulting surface can be added to the training
set, so after retraining, the model will give an even more accurate prediction in the
same region of parameter space. We apply the data-driven model to every panel in
the training set, and collect the predicted shapes 𝑆𝑘p , 𝑘 ∈ {1, 2} where 𝜋𝑘 > 5%. For
each of these, we calculate the maximum deviation of the internal control points
along any dimension, from the true shape in the training set. We then retain the
200K panels (∼15% of the original training set) for which this deviation is largest.
For each such boundary, we re-run the simulation, using the predicted shape 𝑆𝑘p as
the initialization. Finally, we select all panels which have at least 2 mm dierence
along any dimension of any internal control node compared to the panel obtained
originally, and add these to the training set. The resulting, enriched training set is
used to retrain the model.

3.5 Interactive design

In this section, we show how we arrive at a practical interactive design tool for
freeform surface panelization with cold bent glass panels. We aim at a tool com-
patible with the standard design workow of an architectural designer. At every
moment during the editing process, the user gets immediate feedback on the phys-
ical properties of the panelization (i.e., shape and stress predictions for the panels).
Upon request, an automated process running at interactive times uses optimization
to “guide” the design. Figures 3.2 and 3.9 show two dierent double-curved glass
surfaces that have been interactively designed from scratch using our tool. While
it is generally desired to create designs free from breaking panels, in a real project,
one might like to assume the cost of hot-bending a small proportion of the panels.
Therefore, there is a practical trade-o between the smoothness and aesthetics of
a design and its manufacturability. We consider this option by explicitly weighting
various design criteria in the formulation of our inverse design problem.

3.5.1 Optimization setup

Depending on the specic application domain, desired properties might vary. This
translates into the minimization of a composite target functional E through the fol-
lowing optimization problem.

Optimization problem 4 Cold bent glass panelization

minimize E = 𝑤𝜎E𝜎 +𝑤sEs +𝑤fEf +𝑤pEp +𝑤cEc

Overall, the total energy E depends on the vertex positions v ∈ 𝑉 , the edge plane
vectors s𝑒 dening the plane Π𝑒 associated with 𝑒 , the tangent angles 𝜃𝑖 and some
auxiliary variables associated with inequality constraints. Each weighted contribu-
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0 MPa > 65

(a) (b)

Figure 3.10: Optimization of the NHHQ skyscraper design (Zaha Hadid Architects). We rst optimize
for smoothness of the overall design, and then optimize selected high stress areas for stress reduction. (a)
Stress on panels computed on the original shape and panel layout. Red panels exceed the threshold of 65
MPa. (b) Stress on panels after optimization. The inset shows an area with clearly visible shape change.
We decrease the number of panels exceeding 65 MPa from 1517 to 874.

tion to E represents a desired property of the nal design, which we discuss in detail
in the following sections.

Panel stress E𝜎 . The most important property is the manufacturability of the nal
design. Failure in a specic type of glass is modelled by estimating themaximal stress
present in the glass panel and comparing it to the maximum allowed stress value.

The MDN from Section 3.4 acts as a stress estimator. We constrain the predicted
stress value �̂�p for a given boundary p to be less than a stress bound 𝜎max. We assign
𝜎max to a value lower than the stress value at which failure occurs, taking into account
a safety factor and the estimator error. The inequality constraints �̂�p ≤ 𝜎max are
converted to equality constraints by introducing an auxiliary variable 𝑢p ∈ R per
panel boundary p, and formulating the manufacturability energy as

E𝜎 =
∑︁
p
(�̂�p − 𝜎max + 𝑢2p)2 . (3.9)

Figure 3.13 shows the eect of limiting themaximum stress of the design for a section
of the façade of the Lilium tower.

Smoothness Es. Here we collect some terms in the nal objective function which
aim in various ways at panelizations which are as smooth as possible. As shown in
Figure 3.11, this is essential for achieving the stunning look of curved glass façades
as it greatly aects the reection pattern. The smoothness term is the sum of two
individual functionals, i.e. Es = E1 + E2.

Kink angle smoothing E1. It is in general not possible to get smooth connections
along common boundary curves of panels, but we can try to minimize the kink angle.
For each pair of faces 𝑓𝑖 , 𝑓𝑗 sharing a common edge 𝑒 , we consider their respective
predicted panels Ŝ𝑖 , Ŝ𝑗 and minimize the angle between their surface normals n𝑖 , n𝑗
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evaluated at the parameter 𝑡 = 0.5 of the shared curve

E1 =
1
10

∑︁
𝑒∈𝐸𝐼
(1 − n𝑖 · n𝑗 )2, (3.10)

where 𝐸𝐼 is the set of interior edges ofM, and 1/10 is an appropriate importance
weight within the smoothness term. Note that Ŝ𝑖 , Ŝ𝑗 are shape predictions for the
respective boundary curves of the two faces 𝑓𝑖 , 𝑓𝑗 , and thus optimization involves
computing the Jacobian of the MDN output w.r.t. the input boundaries. Figure 3.12
shows the eect of including the kink smoothing term in the design of the NHHQ
façade.

Curve network smoothing E2. Each edge in the dominant mesh polylines ofM
determines a cubic patch boundary curve, and the sequence of these curves should
be also as smooth as possible. At each connection of two edges, the corresponding
tangents should agree, and thus the inwards directed unit tangent vectors satisfy
t𝑖 = −t𝑗 , or equivalently t𝑖 · t𝑗 + 1 = 0. This tangent continuity constraint explains
the rst part in the smoothness term

E2 =
∑︁
(t𝑖 · t𝑗 + 1)2 +

∑︁
[s𝑒 · (n𝑖 + n𝑖+1)]2 . (3.11)

The second part concerns the planes Π𝑒 . We consider an edge 𝑒 with endpoints
v𝑖 , v𝑖+1. The discrete osculating plane at v𝑖 is spanned by (v𝑖−1, v𝑖 , v𝑖+1) and has
a unit normal n𝑖 . Likewise, (v𝑖 , v𝑖+1, v𝑖+2) dene a discrete osculating plane with
normal n𝑖+1 at v𝑖+1. We want Π𝑒 to be the bisecting plane between these two, i.e.
s𝑒 · (n𝑖 +n𝑖+1) = 0. Of course, the sums are taken over all occurrences of the described
situations.

Finally, in practice, a few other parts are added to the smoothness term Es which
concern special cases. At combinatorially singular vertices ofM we constrain the
tangent vectors to lie in a tangent plane. Plus, there are various symmetry consider-
ations which are used at the boundary, but those could easily be replaced by other
terms with a similar eect.

Figure 3.11: Eect of optimization on visual smoothness. On the left, a selection of cold bent panels
computed on a given layout. On the right, the same panels after optimization of the layout for kink angle
and bending stress reduction.
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0◦ kink > 35◦

(a) (b)

Figure 3.12: Comparison of the kink angle between panels in the NHHQ model, before (a) and after (b)
running our design optimization algorithm. As a result, the mean kink angle is lowered from 3.7◦ to 2.7◦,
while the maximum was reduced from 60.9◦ to 36.0◦.

Mesh fairness Ef. So far we have dealt with smoothness of the panelization to a
given meshM. Since we also allow the meshM to change during design, we need
to care about its fairness. This is done in the standard way using second-order dif-
ferences of consecutive vertices along dominant mesh polylines,

Ef =
∑︁
(v𝑖−1 − 2v𝑖 + v𝑖+1)2. (3.12)

Proximity to reference mesh Ep. When designing a panelization for a given ref-
erence geometry, it is not sucient to have the meshM. One will usually have a
ner meshMref describing the reference geometry (Figure 3.4). In order to letM
change, but stay close to the reference surface, we need a term which allows for the
gliding ofM alongMref. This is done in the familiar way: to let a vertex vi stay
close toMref, we consider its closest point v∗𝑖 onMref and the unit surface normal
n∗𝑖 at v∗𝑖 . In the next iteration, vi shall stay close to the tangent plane at v∗𝑖 , which is
expressed via

Ep =
∑︁
v𝑖 ∈𝑉

[
(vi − v∗𝑖 ) · n∗𝑖

]2
. (3.13)

Design space constraints Ec. Sincewewant the neural network to produce reliable
estimates, we need to ensure panel boundary curves remain within the range used
for training (Section 3.4.2). This is achieved as the sum of two constraint functionals
Ec = E3 + E4. First, we constrain the tangent angles to |𝜃𝑖 | = ∠(t𝑖 , e𝑖 ) ≤ 4.9◦ for
all angles 𝜃𝑖 of halfedges e𝑖 with tangent vectors t𝑖 . We again convert inequality
constraints to equality constraints by introducing auxiliary variables 𝑢𝑖 ,

E3 =
∑︁
(𝜃 2𝑖 − (4.9◦)2 + 𝑢2𝑖 )2. (3.14)

Second, we are working under the assumption that the vectors s𝑒 are unitary and
orthogonal to their respective edges 𝑒 , which results

E4 =
∑︁
𝑒

[(s𝑒 · e)2 +
(
s2𝑒 − 1

)2] . (3.15)
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0 MPa > 65

(a) (b) (c)

Figure 3.13: Optimization of the Lilium Tower (model by Zaha Hadid Architects) for dierent target
properties. (a) Stress values for the initial panel layout. (b)Optimizing the design only for stress reduction
and proximity to the original design leads to more panels within the stress threshold, but also to a non-
smooth curve network. (c)Allowing the design to deviate from the input and including fairness, produces
a smoother result with reduced stress. Number of panels exceeding 65 MPa is respectively 293, 131, and
225

3.5.2 Initialization

The edge plane vector s𝑒 of an edge 𝑒 is initialized so that Π𝑒 is the bisecting plane of
two discrete osculating planes, as in the explanation of (Equation 3.11). The angles
𝜃𝑖 are initialized so that they are at most 5◦ and the tangents lie as close as possible
to the estimated tangent planes of the reference geometry. After initializing all other
variables and computing an estimated stress value per face panel, the auxiliary vari-
ables are initialized such that they add up to the inequality constraint bound, or zero
otherwise (i.e. the inequality constraint is not satised). The shape Sp of each panel
is initialized with the MDN prediction using the initial boundary parameters p. In
case there are two possible shapes, we use the one that provides the best solution
considering application dependent criteria (e.g., stress reduction). When looking for
the smoothest t, we pick the one minimizing

∑(1−n𝑖 ·n𝑒 )2, i.e., a measure of angle
deviation between each edge normal (sum of two adjacent face normals orthonor-
malized to e) and the surface normal n𝑖 evaluated at the parameter 𝑡 = 0.5 of the
edge curve.

3.5.3 Optimization solution

The minimization of E results in a nonlinear least-squares problem that we solve us-
ing a standard Gauss-Newton method, similarly to Chapter 2. Derivatives are com-
puted analytically and, since each distinct term of E has local support, the linear
system to be solved at each iteration is sparse. We employ Levenberg-Marquardt
regularization and sparse Cholesky factorization using the TAUCS library Toledo,
2003.

Optimization weights. The weights associated with the target functional E act as
handles for the designer to guide the output of the optimization to the desired result.
We do not opt for a xed weight conguration since the ideal balance is not uniquely
dened, but is instead governed by project-dependent factors such as budget and
design ambition.
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In all our experiments we found it sucient to assign the weights either to zero or
to values 10{−2,−1,0} . Figure 3.13 shows one example of the dierent eects possible
when changing the property importance. In practice, and as a rule of thumb for a
standard optimization where we prioritize stress reduction and smooth panels (in
that order), we use weight values 𝑤𝜎 = 1, 𝑤s = 𝑤c = 10−2, and 𝑤p = 𝑤 𝑓 = 10−1. We
also reduce the fairness importance at the 𝑖-th optimization iteration by scaling its
weight by 0.9𝑖 .

3.6 Experiments and results

3.6.1 Experimental validation

We experimentally validated our simulation results and design workow. For prac-
tical reasons the experiments were done at a small scale using borosilicate thin glass
of about 180 × 130 mm2 and 0.35 mm thickness.

For the validation of the simulation results (see Figure 3.15) high precision frames
weremachined from cast aluminum. The glass panel is pressed down on a 2mmwide
smooth support surface by a dense array of stainless steel nger springs cushioned by
0.5mm Polytetrauoroethylene (PTFE). The support frame matches a thin boundary
strip of the simulated glass panel. We 3D-scanned the shape and the obtained surface
was registered to the output of our shape optimization routine. We observed a worst-
case deviation of 0.12 mm, see Figure 3.15. Note that we registered an oset surface
from the optimal mid-surface to account for the glass thickness.

The frames for the design model illustrated in Figure 3.14 were built from laser
cut andwelded 1.2mm thick stainless steel sheet metal. The glass, cushioned by tape,
is pressed down on to the frame by L-shaped stainless steel xtures spot welded to
the frame. The presented design model is negatively curved and consists of nine

Figure 3.14: Realization of a double-curved surface using 3 × 3 cold bent panels.
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0 mm 0.12

Figure 3.15: A double-curved panel of thickness 0.35 mm with o-plane corner deviation of 6.9 mm.
Right: deviation from the simulation by at most 0.12 mm.

individual panels, each about 200×170mm2 in size. The expected stress levels range
from 20 to 62 MPa.

3.6.2 Validation of data-driven model

Our data-driven model (Section 3.4) must reproduce the output of the physical sim-
ulation model eciently and accurately. To evaluate its accuracy, we generate a test
set of 10K panel boundaries and use the data-driven model to predict the conforming
surfaces. We consider only admissible surfaces, i.e. those with predicted probability
at least 5%. The surface predictions are used to initialize our physical shape optimiza-
tion routine to obtain the true shape and stress values for comparison. We evaluate
shape prediction on panels with maximal stress below 65MPa, which results in mean
absolute error (MAE) ∼ 0.5mm. Note that this is signicantly less than the assumed
1mm thickness of the glass. We evaluate stress on panels whose true maximal stress
is in the range 50–65 MPa (our region of interest); our predictions have MAE of
∼ 2.9MPa.

0 MPa > 65

(a) (b)

Figure 3.16: Bent glass capabilities. (a) A quadrilateral mesh where red faces exceed a deviation of
planarity of 0.02 (measured as the distance between diagonals divided by average edge length), and are
therefore not suitable for a at glass panelization. (b) A cold bent panelization with corresponding face
stresses. The stress values for the six central panels have been computed via simulation since they were
outside the MDN input domain. According to a stress limit of 65MPa, most panels optimized are feasible.
The resulting cold bent panelization is shown in Figure 3.17.
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Figure 3.17: Dominant cold bent glass realizations of the NHHQ model (left), the Lilium Tower (center)
after optimization for smoothness and stress reduction. The surface from Figure 3.16 as an architectural
design (right). Panels exceeding the maximum stress (check Figures 3.10, 3.13, 3.16) are realized with hot
bending.

3.6.3 Applications

From a manufacturing point of view, the simplest solution to clad architectural sur-
faces it the use of planar panels. However, this simplication sacrices the visual
smoothness of the surface. Moreover, planar panels impose a restriction on the pan-
els layout, and in negatively curved areas there is often no other choice than to follow
the principal curvature directions of the surface. On the other hand, a panelization
with double-curved panels is often prohibitive, due to the high production cost of
custommolds. Cold bent glass can be then a suitable solution. In Figure 3.3, we com-
pare the visual appearance of the smoothest possible panelization achievable with
planar panels with a cold bent one, while in Figure 3.16, we show a panelization
layout that is mostly feasible with cold bent glass, but not with planar panels. In
the following, we illustrate how users can employ our workow for architectural
panelization and design.

Façade panelization. In this case, the input is a quadrilateral mesh that encodes
both the design shape and the panel layout. Once the edges of the input mesh are
smoothed via cubic Bézier curves, we can predict panels’ shapes and stresses. Those
panels exceeding the failure criterion shall be realized with custom molds. At this
point, tuning the weights described in Section 3.5.3, the user can optimize the shape
for the reduction of stress and kinks between panels, choosing an appropriate com-
promise between delity to the original shape, number of custom molds needed, and
visual smoothness (see Figures 3.10, 3.12, and 3.13). To show cold bent glass capabil-
ities in façade panelization, we tested this workow on the challenging NHHQ and
Lilium Tower models by Zaha Hadid Architects, which were never realized. Results
are shown in Figure 3.17.

Façade design. Besides the panelization of a given shape, our workow is very well
suited as an interactive design tool. In this case, the user can interactively modify
the quad mesh representing the panel layout and gets immediate feedback on which
panels can be produced with cold bent glass, while exploring dierent designs. Es-
timation times are compatible with an interactive design session. Once the user is
satised with a rst approximate result, the panelization can be further optimized,
as described in Section 3.6.3, to improve smoothness and reduce panel stresses. In
this step, we can further reduce the number of panels which are not feasible for cold
bending. Figures 3.2, 3.9, and 3.16 show some sample architectures designed with
this procedure. In particular, Figure 3.18 demonstrates a screenshot from the design
tool in use.

58



3.7 Discussion

All interactive design sessions were performed on an Intel® Core™ i7-6700HQ
CPU at 2.60GHz and NVIDIA GeForce GTX 960M. The MDN is implemented in Ten-
sorFlow 2.1 and is run on the GPU. For 1K panels, prediction time is 0.1 seconds while
optimization averages to 3 seconds per iteration. We usually deal with less panels
since we target selected high-stress areas of the overall design. A total of 10–20 iter-
ations are enough for the desired results. In comparison, our shape optimization as
described in Section 3.3 implemented in C++ and using the IPopt optimization library
[Wächter & Biegler, 2006] with code-generated derivatives takes around 35 seconds
on average for a single panel with ∼ 103 elements.

Figure 3.18: Screenshot from an interactive session with our design tool, which was integrated to Rhino.
In this case, we have a panelization (right) derived from Catmull-Clark subdivision of a control mesh (left).
The tool provides in real-time predictions for the panel shape in the form of cubic Bézier surfaces, and for
the maximal stress of the panel; here color-coded as safe (blue), critical (pink), and breaking (red). Yellow
panels are ignored as their shape is outside the prediction domain of the model.

3.7 Discussion

We have introduced an interactive, data-driven approach for material-aware form
nding of cold bent glass façades. It can be seamlessly integrated into a typical ar-
chitectural design pipeline, allows non-expert users to interactively edit a paramet-
ric surface while providing real-time feedback on the deformed shape and maximum
stress of cold bent glass panels, and automatically optimize for fairness criteria while
maximal stresses are kept within glass limits. Our method is based on a deep neural
network architecture and multi-modal regression model, overcoming the limitation
of traditional simulation and optimization approaches for glass where the compu-
tational complexity is prohibiting interactivity. By coupling geometric design and
fabrication-aware design, we believe our system will provide a novel and practical
workow, allowing to eciently nd a compromise between economic, aesthetic,
and engineering aspects.
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Identifying such a compromise usually involves multiple competing design goals.
While we have demonstrated the applicability of our system for several design crite-
ria, it would be interesting to extend the design workow by adding capabilities, for
example, for strictly local edits, marking some panels as a priori hot bent, or speci-
fying kink edges. Due to our dierentiable network architecture, in theory it should
be trivial to incorporate additional criteria to our optimization target functional or
even employ a dierent numerical optimization algorithm if desired.

Similar to all data-driven techniques, we should only expect accurate predictions
from our network if similar training data was available. Surprisingly, we noted that
wewere able to discover stable states that we initially did not ndwith the traditional
optimization approach, and used these to enrich our database. However, we cannot
guarantee that our database contains all relevant stable states and that all of themwill
be predicted. Identifying all stable states and optimally sampling the database using
this information would be an interesting avenue for future work. For fabrication,
in our experiments reproducing the desired particular state was trivial and emerged
when intuitively attaching the glass to the frame.

In the presence of more than one potential state, our system currently selects in
each iteration per panel the state that best ts our application dependent criteria. An
alternative would be to compute a global, combinatorial optimal solution among all
potential states. However, due to the combinatorial complexity, this would result in
a much harder and probably computationally intractable optimization problem. We
also considered solving the combinatorial problem by using a continuous relaxation,
but ultimately did not nd evidence in our experiments that would indicate the need
for such an approach as we observed stable convergence to satisfactory results. How-
ever, identifying the global minimum would nevertheless be an interesting research
challenge.

We believe our workow could serve as an inspiration for many other material-
aware design problems. For future work, it would be exciting to explore extensions
to dierent materials, for instance metal, wood, or programmable matter that can
respond to external stimuli, such as shape memory polymers or thermo-reactive ma-
terials.
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Conclusion 4

In this thesis we have investigated two important instances of panelization problems.
We briey summarize the main contributions before discussing some limitations of
the research, and providing the reader with an outlook to future work.

4.1 Summary

In Chapter 2, we aimed to cover an architectural freeform surface with specic types
of developable or nearly developable panels that are relevant to architecture. This is
an important problem that ts into the broader area of constraint-based modeling,
and expands upon previous work by allowing the curve network of the panelization
to be variable during optimization. We achieved this by introducing a novel method
for increasing the developability of a given surface; in our case B-spline surfaces.
The method is based on a property of developable surfaces that has not been used
in this setting before, namely that they possess 1−dimensional Gauss images. We
proved that they are locally well-approximated by developable surfaces with planar
Gauss images and formulated this fact as an optimization problem. In particular, we
introduced an energy functional that measures the deviation of the surface from pos-
sessing this property, and subsequently aimed to minimize it. This method was then
applied to the panelization problem by considering a grid of cubic B-spline surfaces,
that represent the panels, and optimizing each panel to be a developable of a cer-
tain type. These types include (rotational) cylinders, (rotational) cones, and planar
panels; all of great interest to architecture. The focus of this work was not exact de-
velopability, but rather near developability. The motivation for our approach was the
fact that most materials allow for a little bit of stretching and therefore developability
needs not be satised to a high degree.

One such material is glass which was the main focus of the second panelization
problem of this thesis, investigated in Chapter 3. Toughened glass can withstand
higher stresses, and therefore allows initially planar glass panels to be elastically
bent and xed at ambient temperatures to a curved frame. This cold bending pro-
cess produces panels that can exhibit double curvature, providing a cost- and energy-
ecient alternative of higher optical quality to traditional hot bent glass panels. We
present a computational framework that achieves interactive material-aware design
of cold bent glass façades. In order to capture the design space of cold bent glass
panels, we performed approximately 1.5million simulations of random curved panel

61



4 Conclusion

boundaries, within reasonable deformation bounds. The simulation computed pan-
els that satised the curved boundary condition and were of minimal deformation
energy. We discussed that the solution to the simulation optimization was not al-
ways unique, but in some cases multimodal. The resulting simulations were used to
populate a database of curved boundaries and associated panel shapes and maximal
stresses present in the panel. This database was then used to train a mixture-density
network, a regression model capable of capturing multimodality. We investigated
the validity and accuracy of the data-driven model and showed that it is sucient
for our application setting. This model allowed us to interrogate the deformation
space of cold bent glass panels at interactive rates, without the need for additional
simulations. This speedup was utilized in an interactive design tool, implemented in
Rhino, capable of providing immediate feedback on the shapes and maximal stresses
of panelizations consisting of hundreds or thousands of cold bent glass panels. By
integrating the data-driven model to a constrained-based optimization problem, we
were also able to optimize the cold bent glass panelizations for both manufacturabil-
ity and aesthetics.

For both applications explored in this work, a plethora of results and examples
are provided. These results urge us to consider what else is possible as an extension
of this work, but also determine any possible limitations. We briey discuss the latter
in the following section.

4.2 Limitations

Limited by computational constraints and the complexity of the maximal stress func-
tion, we opted for a simulation model that, while sucient for our needs, is not the
industry standard for glass simulation. As an example, Datsiou [2017] uses twenty-
node, quadratic, brick elements with reduced integration properties to prevent shear
locking andmodels the glass panel with a thickness of 2 elements. While appropriate
for onetime simulations, this simulation model is not viable when multiple simula-
tions are needed—as in our case where we require an as-dense-as-possible sampling
of the deformation space. This leads to a regression model which is sucient for ap-
proximate predictions but does not provide the same guarantees as a high-accuracy
simulation.

Another discussion point is the multimodal capability of the method presented
in Chapter 3. While multimodality is suciently captured and represented in our
model, it is not clear what is the subspace of target curved panel boundaries that con-
forms to multiple stable congurations. This is of course a general problem present
in nonlinear optimization. Furthermore, multimodality can be better integrated to
the design tool. The current implementation proceeds to determine the best congu-
ration locally, if more than one are possible, at each iteration of the optimization. We
tested that this is sucient for our needs, and keeps the optimization within interac-
tive rates. Nevertheless, an optimization approach that can handle the combinatorial
complexity of multimodal congurations in a global fashion, while constraining the
computation time to reasonable limits, would be ideal.

We consider the limitations mentioned here as possible future research direc-
tions. We move this discussion to the following section where we provide additional
interesting questions that emerge from this research as candidates for future work.
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4.3 Outlook

We mentioned near developability multiple times across this thesis. In Chapter 2 we
explored nearly developable surfaces as constrained minimizers of an appropriate
energy functional. In Chapter 3 we considered the achievable forms through cold
bending of planar glass panels as nearly developable, since glass is a material that
mostly bends but also allows for some stretching. All these are minor steps that lead
us towards the geometrically largely unexplored area of nearly developable surfaces,
and the class of interesting questions it contains. The proper characterization and
analysis of nearly developable surfaces is a theoretically intriguing research direction
for future work.

Furthermore, it should be clear to the reader that the computational framework
presented in Chapter 3 is not limited to glass, but can be adapted or extended to
other interesting materials, such as wood, metal, and programmable matter. Accu-
rately capturing the design space of other materials, or structural and decorative
elements, in a way that allows for its fast exploration is a research direction that
we nd very interesting. The recent advances in machine learning algorithms and
cheap computational resources, as well as the availability of big data, have made this
possible.

This observation also naturally leads to the question of what else is possible with
machine learning in the architectural and manufacturing industries. A lot of prob-
lems or approaches that were discarded until recently as infeasible or prohibitive are
becoming very simple with modern methodology.

As a nal note, we wish to stimulate the reader’s imagination with the vision of
completely intuitive design tools that provide only the necessary interaction handles
to the user, allowing even non-experts to experiment. Their composition is multi-
disciplinary, and their inception and construction are exciting research challenges
for the future. Coming full circle, this vision is driven by—and justies—the quote
at the beginning of this thesis. By hiding their core mechanisms from the user, fully
integrating essential properties and constraints, and automating optimization and
prediction procedures, tomorrow’s tools ultimately bring creativity to the forefront
and allow the designer to just play.
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Sampling panel boundaries A
𝑙2

𝑙1

𝛼𝛼
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𝜃

𝛾b⊥

Figure A.1: Visualization of some representative random variables that dene the panel boundary. Vector
b⊥ is the rejection of the face normal b, i.e. the normalized cross product of the diagonals of the (skew)
quad, from the corresponding edge. In orange is the nal sampled panel boundary.

We describe here how the panel boundaries forming the training set for our data-
driven model are sampled (Section 3.4.2). We parameterize panel boundaries invari-
antly to rigid transformations, by corner pairwise squared distances d, edge-plane
inclinations γ, and halfedge tangent directions θ (Section 3.2).

In order to sample d such that it represents a valid quad, we start with two ad-
jacent edge lengths 𝑙1, 𝑙2, an angle 𝛼 between them, and a displacement a of the
remaining vertex from the point that would form a parallelogram.

All the parameters are sampled as follows:

◦ Edge lengths 𝑙1, 𝑙2 ∼ U[0.15, 0.60], i.e. 15–60 cm for a 1 mm thick panel,

◦ angle 𝛼 ∼ U[60◦, 120◦],

◦ vector a is given by sampling a point on the unit sphere, then scaling it by a
factor drawn fromU[0,min{𝑙1, 𝑙2}/4],

◦ angle 𝛾𝑖 ∼ U[−90◦, 90◦), and

◦ angle 𝜃𝑖 = (−1)𝑋 arccos𝑌 , where 𝑋 ∼ U{0, 1} and 𝑌 ∼ U[cos 5◦, 1], so 𝜃𝑖 ∈
[−5◦, 5◦],
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A Sampling panel boundaries

whereU denotes the uniform distribution. Figure A.1 visualizes these parameters.
Note that our model for the deformed shape and stress is invariant under scaling

of all geometric magnitudes. Our sampling ranges are chosen to allow scaling the
results to thickness, edge length, and curvature ratios commonly used in cold bent
glass façades.
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Other publications B

Not all research work produced during the period of this PhD was included in this
thesis. Here we provide the abstracts of the excluded publications.

◦ Void Filling of Digital Elevation Models with Deep Generative Models.

Konstantinos Gavriil, Georg Muntingh, and Oliver J.D. Barrowclough.
IEEE Geoscience and Remote Sensing Letters, 16 (8), 1645-1649, 2019.

Abstract. In recent years, advances in machine learning algorithms, cheap
computational resources, and the availability of big data have spurred the deep
learning revolution in various application domains. In particular, supervised
learning techniques in image analysis have led to superhuman performance
in various tasks, such as classication, localization, and segmentation, while
unsupervised learning techniques based on increasingly advanced generative
models have been applied to generate high-resolution synthetic images indis-
tinguishable from real images.
In this paper we consider a state-of-the-art machine learning model for image
inpainting, namely a Wasserstein Generative Adversarial Network based on a
fully convolutional architecture with a contextual attention mechanism. We
show that this model can successfully be transferred to the setting of digital
elevation models (DEMs) for the purpose of generating semantically plausible
data for lling voids. Training, testing and experimentation is done onGeoTIFF
data from various regions in Norway, made openly available by the Norwegian
Mapping Authority.

67



B Other publications

◦ Interpolation of syzygies for implicit matrix representations.

Ioannis Emiris, Konstantinos Gavriil, and Christos Konaxis.
7th International Conference on Algebraic Informatics, 2017.

Abstract. We examine matrix representations of curves and surfaces based on
syzygies and constructed by interpolation through points. They are implicit
representations of objects given as point clouds. The corresponding theory, in-
cluding moving lines, curves and surfaces, has been developed for parametric
models. Our contribution is to show how to compute the required syzygies by
interpolation, when the geometric object is given by a point cloud whose sam-
pling satises mild assumptions. We focus on planar and space curves, where
the theory of syzygies allows us to design an exact algorithm yielding the opti-
mal implicit expression. The method extends readily to surfaces without base
points dened over triangular patches. Our Maple implementation has served
to produce the examples in this paper and is available upon demand by the
authors.
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