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Contributions

▪ Novel optimization method for increasing the developability of an arbitrary surface.

▪ Panelization of freeform architectural surfaces with panels that are

▪ cylindrical (rotational),

▪ conical (rotational),

▪ planar.

▪ Computational framework for interactively designing panelizations with cold bent glass panels.
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Developability

A surface is developable when at every point it is locally isometric 
to the plane.

Properties.

▪ Locally isometric to the plane.

▪ The Gaussian curvature is zero at every point.

▪ A surface geodesic maps to a straight line in the developed plane.

▪ It is a ruled surface which has the same tangent plane across a 
ruling.

▪ The Gauss image is 1-dimensional.
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Local approximation of developable surfaces

Lemma. Along each ruling r, a non-planar developable ruled surface has second order contact with a 
rotational cone Γ (osculating cone). The vertex of this cone is the singular point of r (regression 
point). Γ degenerates to a rotational cylinder for a cylinder S and to a plane if r is an inflection 
ruling.

Theorem. At each regular point 𝑝 of a developable ruled surface 𝑆, there is a developable surface 
with a planar Gauss image, which has second order contact with 𝑆 along the entire ruling through 𝑝
and interpolates a curve 𝑎 ∈ 𝑆 through 𝑝.
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Local approximation of developable surfaces
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Energies

Konstantinos Gavriil

Developability. ℰdevelopable =

j



𝐩i∈Pj

(𝐧i ⋅ 𝐮j + dj)
2

ℰrotational =

j



𝐩i∈Pj

(ത𝐚j ⋅ 𝐧i + 𝐚j ⋅ ഥ𝐧i)
2

Rotationality.

Fairness.

Closeness. ℰcloseness

ℰfairness

where 𝐧i
2 = 1, 𝐮j

2 = 1

where 𝐚j
2 = 1,

𝐚j ⋅ ത𝐚j = 0
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Increasing developability

minimize ℰ = 𝑤1ℰdevelopable + 𝑤2ℰrotational + 𝑤3ℰfairness + 𝑤4ℰcloseness

Solve using standard Gauss-Newton algorithm for nonlinear least squares problems.

Variables:

o Control points.

o Cutting planes.

o Rotation axes.

Initialize by appropriate fitting of the cutting planes (generalized eigenvalue problem) and of the 
rotation axis (linear system).
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Principal curvature lines

The straightening effect on one family of principal curvature lines also confirms the increase of 
developability.
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Gaussian curvature

The Gaussian curvature is zero at every point of a developable surface.
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Paneling
with nearly developables
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Panelization
examples
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Motivation
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Louis Vuitton Foundation by Frank Gehry [Paris, France].
Photo by Francisco Anzola.

Emporia by Gert Wingårdh [Malmö, Sweden]
Photo by Maria Eklind.



Hot bending

Roller bending   & Static bending

▪ High energy requirements.

▪ High transportation costs.

▪ Poor optical quality (roller bending).

▪ Multiple molds (static bending).
High cost and material waste.
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Cold bending

▪ Bend flat panel to frame with clamps/presses.

▪ Fix with mechanical fixings or
structural adhesives.

▪ Low-cost & energy-efficient alternative.

▪ No need for furnaces or molds.

▪ Transportation of flat panels.

▪ Constrained design space.
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Method overview

▪ Build dataset of multiple simulations of cold bent glass panels.

▪ Fit regression model to the dataset.

▪ Use the model to interactively navigate the design space and provide immediate feedback on cold 
bent glass panelizations.
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Geometry representation
of cold bent glass panelizations
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Optimized geometric Hermite curve  [Yong & Cheng, 2004]
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▪ Planar cubic curve 𝐶: 0, 1 → ℝ3 of minimum strain energy 0
1
𝐶′′ 𝑡 2 ⅆ𝑡 .

▪ Defined by the two endpoints 𝐯1, 𝐯2 ∈ ℝ3 and two tangent directions 𝐭1, 𝐭2 ∈ ℝ3.

▪ Inner control points 𝐯𝑖 +𝑚𝑖𝐭𝑖, 𝑖 = 1,2 are given by

𝑚1 =
𝐯2−𝐯1 ⋅ 2𝐭1−(𝐭1⋅𝐭2)𝐭2

4− 𝐭1⋅𝐭2
2 ,

and 𝑚2 by switching indices 1 ↔ 2.

𝐯1

𝐯2

𝐯2 +𝑚2𝐭2

𝐯1 +𝑚1𝐭1

𝐭1

𝐭2
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Edge curve 𝐶𝑒
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Panel boundary
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Simulation
Minimal energy panels
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Simulation

Continuous formulation.

▪ Planar mid-surface orthogonally extruded by 
ℎ/2 in both directions.
[Gingold et al., 2004]

▪ Green’s stress tensor.

𝐄 𝐱, ത𝐱, 𝑧 = ത𝐄 𝐱, ത𝐱 + 𝑧 𝐄 𝐱, ത𝐱
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Simulation

Discrete formulation.

▪ Membrane energy density.

▪ Triangle-based piecewise constant strains.

▪ Integrated over panel thickness with the Saint Venant-
Kirchhoff model.

▪ Bending energy density.

▪ Triangle-based discrete approximation of the shape operator.
[Grinspun et al., 2006]

▪ Integrated over panel thickness using Koiter’s shell model.
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[Pfaff et al., 2014]
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Simulation

Minimal energy panels. Minimize total strain energy of the panel given 𝐶0 boundary conditions.

Initialization.

▪ Zero-twist Hermite interpolant of the boundary.

▪ Delaunay triangulation of the interior given number of boundary edges.

▪ Minimum distortion conformal flattening of the mesh.

Minimization.

▪ Both deformed and undeformed configurations are variable.

▪ Internal nodes of rest configuration are computed through Laplacian smoothing of boundary nodes.
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Simulation

Failure criterion.

▪ Compute principal stress as the maximum absolute singular value of the first Piola-Kirchhoff stress 
tensor for each element at offset ±ℎ/2.

▪ Maximal stress is defined as the 𝐿12-norm of the principal stresses.

Multiple stable equilibria.
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Data-driven model
Mixture density network
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Model architecture
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D:  dense layer
LN: layer normalization
RB: residual block
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Model output
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𝜻𝑘 = 𝐒𝐩
𝑘; ො𝜎𝐩

𝑘

ො𝜋𝑘



Model training

Minimize negative log-likelihood of the training set 𝒯 under the Gaussian mixture model

ℒ 𝒯;𝐰 = − 

𝐩,𝜻 ∈𝒯

log 

𝑘=1

2

ො𝜋𝑘 𝐩;𝐰 𝒩 𝜻|𝜻𝑘 𝐩;𝐰 , 𝝃𝑘 𝐩;𝐰

where

Konstantinos Gavriil

𝐩: (input) panel boundary

𝜻: true output

𝐰: network weights

𝜻𝑘: mean of 𝑘th component (output)

𝝃𝑘: variance of 𝑘th component



Model training

Best model determined by random sampling of hyperparameters:

▪ Stochastic gradient descent method Adam [Kingma & Ba, 2014].

▪ Learning rate of 1e-4.

▪ Batch size of 2048 samples.

▪ Early stopping with patience of 400 epochs.

▪ Validation set of 10%.

Training time on an NVIDIA TITAN X: ~20 hours (~30 seconds / epoch).
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Interactive design
of cold bent glass panelizations
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Interactive design

Cold bent glass panelization as an optimization problem.

minimize ℰ = 𝑤𝜎ℰ𝜎 + 𝑤sℰs + 𝑤fℰf + 𝑤pℰp + 𝑤cℰc

Konstantinos Gavriil

ℰ𝜎: panel stress

ℰs: smoothness

ℰf: mesh fairness

ℰp: proximity to reference mesh

ℰc: design space constraints



Panel stress  ℰ𝜎

ℰ𝜎 = 

𝐩

ො𝜎𝐩 − 𝜎max + 𝑢𝐩
2 2

▪ Penalize stress values exceeding maximum allowed.

▪ We use 65 MPa for 𝜎max.
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ො𝜎𝐩 ≤ 𝜎max



Panel stress  ℰ𝜎
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Smoothness  ℰs = ℰ1 + ℰ2

▪ King angle smoothness ℰ1. Smooth connections for panels sharing an edge.

ℰ1 =
1

10


𝑒∈𝐸𝐼

1 − 𝐧𝑖 ⋅ 𝐧𝑗
2

▪ Curve network smoothness ℰ2. Smooth connections for consecutive edge curves.

ℰ2 =  𝐭𝑖 ⋅ 𝐭𝑗 + 1
2
+ 𝐬𝑒 ⋅ 𝐧𝑖 + 𝐧𝑖+1

2
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Smoothness  ℰs

Konstantinos Gavriil

>35°

0°

mean kink angle:  3.7° →  2.7°
max  kink angle: 60.9° → 36.0°

[NHHQ, ZHA]



Smoothness  ℰs
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Mesh fairness  ℰf

▪ Summation of standard mesh fairness functionals, e.g. first-order and second-order differences of 
consecutive vertices along dominant mesh polylines.

▪ We mainly use second-order differences.

ℰf = 𝐯𝑖−1 − 2𝐯𝑖 + 𝐯𝑖+1
2
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Proximity to reference mesh  ℰp

▪ Use either the original mesh ℳ or a different (usually finer) reference mesh ℳref.

▪ Use tangent distance minimization (TDM).

ℰp = 

𝐯𝑖∈𝑉

𝐯𝑖 − 𝐯𝑖
∗ ⋅ 𝐧𝑖

∗ 2

where
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𝐯𝑖: vertex of ℳ

𝐯𝑖
∗: nearest neighbor of 𝐯𝑖 in ℳref

𝐧𝑖
∗: estimated normal of 𝐯𝑖

∗ in ℳref



Design space constraints  ℰc = ℰ3 + ℰ4

▪ Tangent angle constraint ℰ3.

ℰ3 = 𝜃𝑖
2 − 4.9° 2 + 𝑢𝑖

2 2

▪ Unity & orthogonality of plane spanning vector ℰ4.

ℰ4 =

𝑒

𝐬𝑒 ⋅ 𝐞
2 + 𝐬𝑒

2 − 1 2
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𝜃𝑖 = ∠ 𝐭𝑖 , 𝒆𝑖 ≤ 4.9°
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Optimization problem

Initialization.

▪ Initialize edge plane vectors 𝐬𝑒 such that plane Π𝑒 is the bisecting plane of the previous and next 
osculating planes.

▪ Initialize angles 𝜃𝑖 such that they are at most 4.9° and the tangents 𝐭𝑖 lie as close as possible to 
the tangent plane of the corresponding vertex.

▪ Initialize a panel (shape 𝐒𝐩 & stress 𝜎𝐩) for each (quad) face boundary 𝐩 using the MDN.
In case multiple panels are valid, choose best one according to user-defined criterion:

▪ Lowest stress.

▪ Smoothest fit. According an angle deviation measure σ 1 − 𝐧𝑖 ⋅ 𝐧𝑒
2.

Solution.

▪ Unconstrained nonlinear least-squares problem.

▪ Use standard Gauss-Newton method.
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Weight influence
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initial stress + proximity stress + fairness + proximity
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0
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Experimental validation
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6.9 mm off-plane corner deviation

high precision frame
machined from cast aluminum

borosilicate thin glass
180 × 130 × 0.35 (mm)

stainless steel finger springs
PTFE-cushioned



Experimental validation
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Prototype
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▪ Borosilicate thin glass.
200 x 170 x 0.35 (mm)

▪ Frame from laser cut and welded 
stainless steel sheet metal.
1.2 mm thick

▪ L-shaped fixtures press the 
(tape-cushioned) glass to the 
frame.

▪ Expected stress range:
20 – 62 MPa
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Validation of data-driven model

▪ Use test set of 10K panel boundaries.

▪ Predict shape 𝐒𝐩
𝑘 and stress ො𝜎𝐩

𝑘. Consider only predictions with ො𝜋𝐩
𝑘 ≥ 0.05.

▪ Use shape prediction to initialize simulation and compare.

▪ Shape prediction for panels with 𝜎𝐩
𝑘 ≤ 65 MPa (manufacturable panels)

MAE ≈ 0.5 mm < 1mm (glass thickness).

▪ Stress prediction for panels with 𝜎𝐩
𝑘 ∈ 50, 65 MPa (region of interest)

MAE ≈ 2.9 MPa.
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Results
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Comparison to PQ panelization

Konstantinos Gavriil

PQ mesh following principal curvature network.
Smoothest possible panelization with flat panels.
[Pellis et al., 2019]

Cold bent glass panelization.
Smoothness increase.
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Zaha Hadid Architects
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Lilium Tower (optimized)
Zaha Hadid Architects
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Interactive design

▪ Time for 1K panels:

Prediction:   0.1 sec
Optimization: 3.0 sec / iteration

▪ Total 10 – 20 iterations needed.

▪ Intel® Core™ i7-6700HQ CPU at 2.60 GHz
and NVIDIA GeForce GTX 960M.

VS

▪ Average 35 sec to simulate one panel.

safe | critical | breaking | outside domain
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